常用的业务分析指标统计口径(基于Hive实现)

偷闲,整理自己作为分析师工作下常用的一些业务指标的计算口径,不足之处,往多多指正;
这里,将指标分成3类-事件类、漏斗类、留存类

1 事件类

个人定义:可以直接通过计数计算&加减得到的指标

1.1 uv(日活&dau)

  • 定义:用户使用&曝光人数
  • 统计口径:
select count(distinct user_id) as pv 
  from  xx --表  
 where p_date = ''  --时间限制 
   and stat_id rlike 'xxx.show' --用户行为埋点限制

1.2 pv(曝光数)

  • 定义:曝光&点击数(不去重)
  • 统计口径:
select count(user_id) as pv 
  from  xx --表  
 where p_date = ''  --时间限制 
   and stat_id rlike 'xxx.show' --用户行为埋点限制

1.3 停留时长

  • 定义:页面&功能的使用时长

目前的统计方案主要有两种

  1. 直接取用开发提供的时间;
  2. 离开时间点-进入时间点的时间间隔(对数据基础要求高)
  • 统计口径:
 --放在某个日志文件里;
--直接取用开发提供的时间;
select ziduan['time'] as time
 from  xx --表  
where p_date = ''  --时间限制 
 and stat_id rlike 'xxx.show' --用户行为埋点限制

--离开时间点-进入时间点的时间间隔(对数据基础要求高)
select max(time) - min(time) as time
  from xx表
 where p_date = 'xxx'  --时间限制 
   and user_id = 'xxx' --选定用户

2、漏斗类

顾名思义,指标计算出来加减外 还有乘除

2.1 点击&点赞率(UV)

select (count(distinct p2.user_id)*1.00/count(distinct p1.user_id))*100 as uv_click_rate 
  from  (
        select user_id
          from xxx --表 
         where p_date = ''  --时间限制 
           and stat_id rlike 'xxx.show' --用户行为埋点限制(曝光)
       )p1

 left join

       (
        select user_id
          from xxx --表 
         where p_date = ''  --时间限制 
           and stat_id rlike 'xxx.click' --用户行为埋点限制(点击)
       	)p2
     on  p1.p_date = p2.p_date

2.1 点击&点赞率(PV)

select (count(p2.user_id)*1.00/count(p1.user_id))*100 as pv_click_rate 
  from  (
        select user_id
          from xxx --表 
         where p_date = ''  --时间限制 
           and stat_id rlike 'xxx.show' --用户行为埋点限制(曝光)
       )p1

  left join

       (
        select user_id
          from xxx --表 
         where p_date = ''  --时间限制 
           and stat_id rlike 'xxx.click' --用户行为埋点限制(点击)
       	)p2
     on  p1.p_date = p2.p_date

3、留存类

3.1 次日&三日&五日&七日留存

-----------------------------------------------------------------------------
--单天
select (count(p2.user_id)*1.00/count(p1.user_id))*100 as return_rate 
  from  (
        select user_id
          from xxx --表 
         where p_date = ['last_1_day']  --时间限制 
           and stat_id rlike 'xxx.show' --用户行为埋点限制(曝光)
       )p1

  left join

       (
        select user_id
          from xxx --表 
         where p_date = ['now']  --时间限制 
           and stat_id rlike 'xxx.show' --用户行为埋点限制(点击)
       	)p2
     on  p1.user_id = p2.user_id

---------------------------------------------------------
-- 一段时间
select (count(p2.user_id)*1.00/count(p1.user_id))*100 as return_rate 
      ,p1.date
  from  (
        select user_id
          from xxx --表 
         where p_date >= xxx  --时间限制
           and p_date <= xxx 
           and stat_id rlike 'xxx.show' --用户行为埋点限制(曝光)
       )p1

  left join

       (
        select user_id
          from xxx --表 
         where p_date >= xxx  --时间限制
           and p_date <= xxx  --时间限制
           and stat_id rlike 'xxx.show' --用户行为埋点限制(点击)
       	)p2
     on  p1.user_id = p2.user_id
    and date_add (p1.date,1) = p2.p_date
  group by p1.date
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

胸中有数-数分版

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值