parition算法是用于解决TopK问题代价最小的算法之一
时间O(n) 空间O(1)
算法流程:
- 引入随机化选取一个枢轴并与尾元素交换
- 将区间内元素排为小于枢轴在前,大于枢轴在后的形式 使得i-lst大于等于枢轴
- 比较i与k大小递归处理
- 返回元素
class Solution {
public:
int findKthLargest(vector<int>& nums, int k) {
int fst = 0, lst = nums.size() - 1;
k = lst - k + 1;
while(fst <= lst)
{
int pos = fst + ( rand() % (lst - fst + 1) );
swap(nums[lst], nums[pos]);
int i = fst, j = fst;
while(j < lst)
{
if(nums[j] <= nums[lst])
swap(nums[i++], nums[j]);
++j;
}
swap(nums[i], nums[j]);
if(i == k)
{
break;
}
else if(i > k)
{
lst = i - 1;
}
else
{
fst = i + 1;
}
}
return nums[k];
}
};