利用数学方法进行算法优化

LeetCode 1630

题目链接:https://leetcode.com/problems/arithmetic-subarrays/

若一个数组中的元素按某种顺序排列后能形成等差数列,则该数组是“arithmetic”的。现在给出数组a以及若干个询问,每个询问包含两个数i和j,问a[i]至a[j]这一段子数组是否为“arithmetic”的。

判断数组中元素能否构成等差数列,最简单的想法就是排序,排序后查看相邻两元素的差是否相等。该方法需要的时间复杂度为 O ( N × l o g N ) O(N \times log N) O(N×logN)

实际上,可以通过等差数列通项公式将时间复杂度降至 O ( N ) O(N) O(N)。在得知项数(即N)的情况下,找出数组中的最大值max和最小值min,即可计算得到公差 d = m a x − m i n N d = \frac{max-min}{N} d=Nmaxmin。然后,对于数组中的任一元素k,若k能作为等差数列的一部分,则它在等差数列中是第 k − m i n d + 1 \frac{k-min}{d}+1 dkmin+1项。因此,我们只需要一个额外的bool数组,来判断等差数列中的每一项是否在数组中均有元素对应即可。

bool GetAns(int* a, int lef, int rig) {
    int min = a[lef], max = a[rig];

    for (int i=lef; i<=rig; i++) {
        min = a[i] < min ? a[i] : min;
        max = a[i] > max ? a[i] : max;
    }
    
    if (min==max)
        return 1;
    if ((max-min)%(rig-lef)!=0) 
    //由于数组为int型,若计算得到的公差为小数的话,则绝对不可能构成等差数列
        return 0;

    int d = (max-min)/(rig-lef);
    bool f[505];
    memset(f, 0, sizeof(f));
    for (int i=lef; i<=rig; i++) {
        if ((a[i]-min)%d != 0)
            return 0;
        if (f[(a[i]-min)/d])
            return 0;
        f[(a[i]-min)/d] = 1;
    }
    return 1;
}

bool* checkArithmeticSubarrays(int* a, int n, int* l, int lSize, int* r, int rSize, int* returnSize){
    *returnSize = lSize;
    bool *ans = (bool*)malloc(lSize*sizeof(bool));

    for (int i=0; i<lSize; i++)
        ans[i] = GetAns(a, l[i], r[i]);

    return ans;
}



LeetCode 1823

题目链接: https://leetcode.com/problems/find-the-winner-of-the-circular-game/

经典的约瑟夫环问题。n个人围成一个圈报数,从编号为1的人开始报数,报到k的人退出,然后从退出者的下一位开始从1继续报数,重复以上过程直到只剩一人,求此人(即胜利者)坐标。

首先定义函数 f ( n , k ) f(n,k) f(n,k),表示n个人参与游戏,报数的数值为k,最后胜利者的坐标。显然, f ( 1 , k ) f(1, k) f(1,k)恒等于1。

接下来,我们看如下这张表,假设k=3,第一行是每个人的原始坐标,下面的每行都是每轮报数中每个人报的数(或者说,是每个人在每轮的临时坐标):

请添加图片描述

第一轮,每个人报的数(也就是此人在第一轮的临时坐标)都和自己的原始坐标是一致的,第k个人报的数是k,被淘汰了,那么原来的第k+1个人以及其后面的人,在第二轮的临时坐标又从1开始计数,因此在第二轮中每个人的临时坐标都比第一轮少k。同理,第三轮每个人的临时坐标要比第二轮的少k。实际上,由于环的存在,假设某人第i轮的临时坐标为 p i p_i pi,有 p i = ( p i + 1 + k ) % n i p_i = (p_{i+1} + k)\% n_i pi=(pi+1+k)%ni,其中 n i n_i ni表示参与第i轮的总人数。

另外,对于 f ( n , k ) f(n,k) f(n,k)来说, f ( n , k ) f(n, k) f(n,k)得到的是胜利者在第一轮的临时坐标(其实就是原坐标), f ( n − 1 , k ) f(n-1, k) f(n1,k)得到的是胜利者在第二轮的临时坐标…… f ( n − x , k ) f(n - x, k) f(nx,k)得到的是胜利者在x+1轮的临时坐标 p x + 1 p_{x+1} px+1

由此可得 f ( n , k ) = ( f ( n − 1 , k ) + k ) % n f(n, k) = (f(n-1, k) + k) \% n f(n,k)=(f(n1,k)+k)%n。实际上,该公式计算出来可能得到结果为0的情况,这是因为胜利者在第i轮的坐标 p i = n i p_i = n_i pi=ni,此时该坐标对 n i n_i ni取模会得到0,因此:
f ( n , k ) = { ( f ( n − 1 , k ) + k ) % n ( f ( n − 1 , k ) + k ) % n > 0 n ( f ( n − 1 , k ) + k ) % n = 0 f(n, k) =\begin{cases} (f(n-1, k) + k) \% n & (f(n-1, k) + k) \% n>0\\ n & (f(n-1, k) + k) \% n=0 \end{cases} f(n,k)={(f(n1,k)+k)%nn(f(n1,k)+k)%n>0(f(n1,k)+k)%n=0

int findTheWinner(int n, int k){
    int ans = 1;
    for (int i=2; i<=n; i++) 
        if ((ans + k) % i == 0)
            ans = i;
        else 
            ans = (ans + k) % i;
    return ans;
}



参考资料

约瑟夫环——公式法(递推公式)

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值