LeedCode---【141】【环形链表】

本文介绍了一种使用快慢指针判断链表中是否存在环的高效算法,并通过具体代码实现展示了该算法的工作原理。适用于链表数据结构的环检测场景。

一、原题要求:

给定一个链表,判断链表中是否有环。

解题思路:    判断是否带环:用快慢指针。快指针每走两步,慢指针走一步,如果两者在某个点相遇,则链表带环。

二、代码实现:

/**
 * 原题要求:
 * 给定一个链表,判断链表中是否有环。
 * 思路:
 * 判断是否带环:用快慢指针。快指针每走两步,慢指针走一步,如果两者在某个点相遇,则链表带环。
 *
 * @ClassName: Main
 * @Description: TODO
 * @Author: Mr.Ye
 * @Data: 2018-11-24 18:33
 * @Version: 1.0
 **/
class ListNode {
    int val;
    ListNode next;

    ListNode(int x) {
        val = x;
    }
}

class Solution {
    public boolean hasCycle(ListNode head) {
        if (head == null || head.next == null){
            return false;
        }
        ListNode fast = head;
        ListNode slow = head;
        while(fast != null && fast.next != null){
            fast = fast.next.next;
            slow = slow.next;
            if(fast == slow){
                return true;
            }
        }
        return false;
    }
}

public class Main {
    public static void main(String[] args) {
        ListNode n1 = new ListNode(1);
        ListNode n2 = new ListNode(4);
        ListNode n3 = new ListNode(3);
        ListNode n4 = new ListNode(2);
        ListNode n5 = new ListNode(5);
        ListNode n6 = new ListNode(2);
        n1.next = n2;
        n2.next = n3;
        n3.next = n4;
        n4.next = n5;
        n5.next = n6;
        n6.next = n4;

        Solution solution = new Solution();
        System.out.println(solution.hasCycle(n1));
    }

    public static void print(ListNode head) {
        for (ListNode temp = head; temp != null; temp = temp.next) {
            System.out.print(temp.val + "->");
        }
        System.out.println("null");
    }
}


 

运行结果:

内容概要:本文详细介绍了如何使用Hugging Face Transformers库进行大模型推理,涵盖环境配置、模型下载、缓存管理、离线使用、文本生成、推理pipeline及模型量化技术。重点讲解了使用LLMs进行自回归生成的核心流程,包括token选择策略、生成参数配置(如max_new_tokens、do_sample)、填充方式(左填充的重要性)以及常见陷阱的规避方法。同时深入探讨了多种量化技术(如GPTQ、AWQ、bitsandbytes的4位/8位量化),并通过实例演示了如何加载本地模型、应用聊天模板、结合Flash Attention优化性能,并实现CPU-GPU混合卸载以应对显存不足的问题。; 适合人群:具备Python编程基础和深度学习基础知识,熟悉Transformer架构,从事NLP或大模型相关工作的研究人员、工程师和技术爱好者;尤其适合需要在资源受限环境下部署大模型的开发者。; 使用场景及目标:①掌握Hugging Face Transformers库的核心API,实现大模型的本地加载与高效推理;②理解和避免大模型生成过程中的常见问题(如输出过短、重复生成、填充错误等);③应用量化技术降低大模型内存占用,实现在消费级GPU或CPU上的部署;④构建支持批量处理和多模态任务的推理流水线。; 阅读建议:此资源理论与实践紧密结合,建议读者边阅读边动手实践,复现文中的代码示例,并尝试在不同模型和硬件环境下进行调优。重点关注生成配置、量化参数和设备映射策略,结合具体应用场景灵活调整。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值