语义分割之全卷积网络FCN论文阅读及代码实现

本文介绍了全卷积网络(FCN)在语义分割中的应用,详细解读了FCN的网络结构,特别是反卷积在上采样中的作用。通过论文解析和代码实现,展示了FCN如何从卷积层到反卷积层,实现像素级别的分类。文章还分享了作者基于VGG16实现的FCN代码,并附有训练结果。
摘要由CSDN通过智能技术生成

今天来看一篇复古的文章,Full Convolutional Networks 即全卷积神经网络,这是 2015 年的一篇语义分割方向的文章,是一篇比较久远的开山之作。因为最近在研究语义分割方向,所以还是决定先从这个鼻祖入手,毕竟后面的文章很多都借鉴了这篇文章的思想,掌握好基础我们才能飞的更高。本篇文章分为两部分: 论文解读与代码实现。

论文地址: Fully Convolutional Networks for Semantic Segmentation

论文解读

语义分割介绍

语义分割(Semantic Segmentation)的目的是对图像中每一个像素点进行分类,与普通的分类任务只输出某个类别不同,语义分割任务输出是与输入图像大小相同的图像,输出图像的每个像素对应了输入图像每个像素的类别。
语义分割的预测结果

网络结构

FCN 的基本结构很简单,就是全部由卷积层组成的网络。用于图像分类的网络一般结构是"卷积-池化-卷积-池化-全连接",其中卷积和全连接层是有参数的,池化则没有参数。论文作者认为全连接层让目标的位置信息消失了,只保留了语义信息,因此将全连接操作更换为卷积操作可以同时保留位置信息及语义信息,达到给每个像素分类的目的。网络的基本结构如下:

fcn网络结构

输入图像经过卷积和池化之后,得到的 feature map 宽高相对原图缩小了数倍,例如下图中,提取特征之后"特征长方体"的宽高为原图像的 1/32,为了得到与原图大小一致的输出结果,需要对其进行上采样(upsampling),下面介绍上采样的方法之一-反卷积(图中最终输出的"厚度"是 21,因为类别数是 21,每一层可以看做是原图像中的每个像素属于某类别的概率,coding 的时候需要注意一下)。
网络结构细节

反卷积

反卷积是上采样(unsampling) 的一种方式,论文作者在实验之后发现反卷积相较于其他上采样方式例如 bilinear upsampling 效率更高,所以采用了这种方式。

关于反卷积的解释借鉴了这一篇: https://medium.com/activating-robotic-minds/up-sampling-with-transposed-convolution-9ae4f2df52d0, 英文OK的小伙伴推荐看原文,讲的很通透。

先看看正向卷积,我们知道卷积操作本质就是矩阵相乘再相加。现在假设我们有一个 4x4 的矩阵,卷积核大小为 3x3,步幅为 1 且不填充,那么其输出会是一个 2x2 的

评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值