UserOrderSort.java
package com.igeekhome.mapreduce.model;
import org.apache.hadoop.io.WritableComparable;
import java.io.DataInput;
import java.io.DataOutput;
import java.io.IOException;
public class UserOrderSort implements WritableComparable<UserOrderSort> {
//订单编号
private Integer orderId;
//用户名
private String userName;
//用户性别
private String sex;
//订购商品名称
private String goodsName;
//商品的单价
private Integer price;
//订购商品数量
private Integer saleCount;
//订购总价
private Integer totalPrice;
//重写比较排序方法
//按照订单总金额。进行降序排列
@Override
public int compareTo(UserOrderSort userOrderSort) {
//获取要比较的订单总额
Integer inputTotalPrice = userOrderSort.getTotalPrice();
//定义返回值
int returnCode=-1;
if(this.totalPrice<inputTotalPrice){
returnCode= -1;
}else if(this.totalPrice>inputTotalPrice){
returnCode=1;
}
else{
returnCode=0;
}
return returnCode;
}
@Override
public void write(DataOutput dataOutput) throws IOException {
dataOutput.writeInt(orderId);
dataOutput.writeUTF(userName);
dataOutput.writeUTF(sex);
dataOutput.writeUTF(goodsName);
dataOutput.writeInt(price);
dataOutput.writeInt(saleCount);
dataOutput.writeInt(totalPrice);
}
@Override
public void readFields(DataInput dataInput) throws IOException {
//在反序列化时,属性的顺序要与序列化一致
this.orderId = dataInput.readInt();
this.userName= dataInput.readUTF();
this.sex= dataInput.readUTF();
this.goodsName= dataInput.readUTF();
this.price = dataInput.readInt();
this.saleCount = dataInput.readInt();
this.totalPrice = dataInput.readInt();
}
@Override
public String toString() {
return this.totalPrice.toString();
}
public UserOrderSort() {
}
public Integer getOrderId() {
return orderId;
}
public void setOrderId(Integer orderId) {
this.orderId = orderId;
}
public String getUserName() {
return userName;
}
public void setUserName(String userName) {
this.userName = userName;
}
public String getSex() {
return sex;
}
public void setSex(String sex) {
this.sex = sex;
}
public String getGoodsName() {
return goodsName;
}
public void setGoodsName(String goodsName) {
this.goodsName = goodsName;
}
public Integer getPrice() {
return price;
}
public void setPrice(Integer price) {
this.price = price;
}
public Integer getSaleCount() {
return saleCount;
}
public void setSaleCount(Integer saleCount) {
this.saleCount = saleCount;
}
public Integer getTotalPrice() {
return totalPrice;
}
public void setTotalPrice(Integer totalPrice) {
this.totalPrice = totalPrice;
}
public void setTotalPrice() {
this.totalPrice = this.price*this.saleCount;
}
}
UserOrderSortDriver.java
package com.igeekhome.mapreduce.ordersort;
import com.igeekhome.mapreduce.model.UserOrderSort;
import com.igeekhome.mapreduce.order.SexPartitioner;
import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Job;
import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;
import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat;
import java.io.IOException;
public class UserOrderSortDriver {
public static void main(String[] args) throws IOException, ClassNotFoundException, InterruptedException {
//1.获取配置信息对象和job对象
Configuration conf = new Configuration();
Job job = Job.getInstance(conf);
//2.关联driver类
job.setJarByClass(UserOrderSortDriver.class);
//3.设置mapper和reduce的类
job.setMapperClass(UserOrderSortMapper.class);
job.setReducerClass(UserOrderSortReducer.class);
//4.设置mapper输出的kv类型
job.setMapOutputKeyClass(UserOrderSort.class);
job.setMapOutputValueClass(Text.class);
//5设置最终输出的kv类型(reducer输出的kv类型)
job.setOutputKeyClass(Text.class);
job.setOutputValueClass(UserOrderSort.class);
//6.设置文件的输入路径和计算结果的输出路径
Path filePath1 = new Path("D:\\bigdata\\sale_details.txt");
FileInputFormat.setInputPaths(job,filePath1);
//设置计算结果的输出路径(不存在)
Path outputPath = new Path("D:\\bigdata\\order_sort_output");
FileOutputFormat.setOutputPath(job,outputPath);
// //设置采用自定义分区
// job.setPartitionerClass(SexPartitioner.class);
// //根据最终结果文件的个数设置对应的reduce task任务的个数
// job.setNumReduceTasks(3);
//7.提交任务,进行计算
boolean result=job.waitForCompletion(true);
System.out.println(result?"执行成功":"执行失败");
}
}
UserOrderSortMapper.java
package com.igeekhome.mapreduce.ordersort;
import com.igeekhome.mapreduce.model.UserOrderSort;
import org.apache.hadoop.io.LongWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Mapper;
import java.io.IOException;
/*
* LongWritable:代表输入的key,值为每行数据的偏移量
* UserOrderSort:代表输出的key,值为进行排序的用户订单对象
* */
public class UserOrderSortMapper extends Mapper<LongWritable, Text, UserOrderSort,Text>{
//新建UserOrderSort对象作为输出的key
private UserOrderSort keyOut=new UserOrderSort();
//新建Text对象作为输出的value
private Text valueOut=new Text();
@Override
protected void map(LongWritable key, Text value, Context context) throws IOException, InterruptedException {
//获取一行数据
String line = value.toString();
//根据文本间的分隔符对于单词进行拆分
String[] orderData = line.split(",");
//根据下标提取数据
String orderId = orderData[0];
String userName = orderData[1];
String sex = orderData[2];
String goodsName = orderData[3];
String price = orderData[4];
String saleCount = orderData[5];
//为输出的key赋值
keyOut.setOrderId(Integer.parseInt(orderId));
keyOut.setUserName(userName);
keyOut.setSex(sex);
keyOut.setGoodsName(goodsName);
keyOut.setPrice(Integer.parseInt(price));
keyOut.setSaleCount(Integer.parseInt(saleCount));
keyOut.setTotalPrice();
//为输出的value赋值
valueOut.set(userName);
//map阶段进行输出
context.write(keyOut,valueOut);
}
}
UserOrderSortReducer.java
package com.igeekhome.mapreduce.ordersort;
import com.igeekhome.mapreduce.model.UserOrderSort;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Reducer;
import java.io.IOException;
/**
* 第一个UserOrderSort:代表输入的key值进行排序的用户订单对象
* 第一个Text:代表输入的value值为用户名
*
* 第二个UserOrderSort:代表输出的value值进行排序的用户订单对象
* 第二个Text:代表输出的key值为用户名
*
* */
public class UserOrderSortReducer extends Reducer<UserOrderSort, Text,Text,UserOrderSort> {
@Override
protected void reduce(UserOrderSort userOrderSort, Iterable<Text> values, Context context) throws IOException, InterruptedException {
for (Text userName : values) {
context.write(userName,userOrderSort);
}
}
}
运行截图
sale_details.txt
order_sort_output