超现实数

超现实数

研究了一下超现实数,不得不赞叹人类的智慧是多么伟大


做题方法(浓缩内容)

0 0 0为后手必胜, ∗ * 为先手必胜。

一个局面 { L ∣ R } \{L|R\} {LR}表示当前状态下 A A A能去的状态 L L L,以及 B B B能去的状态 R R R。他有一个权值,权值越大对 A A A越有利。 > 0 A >0A >0A就稳赢,越大 A A A赢得越爽, = 0 =0 =0后手必胜, < 0 B <0B <0B必胜。

我们可以把 { L ∣ R } \{L|R\} {LR}与有理数建立联系:

若是 L L L R R R之间存在整数,则 { L ∣ R } \{L|R\} {LR}等于最接近 0 0 0的整数。否则:

{ L ∣ R } \{ L|R\} {LR}的值为 j 2 k \frac{j}{2^k} 2kj,满足 L < j 2 k < R L<\frac{j}{2^k}<R L<2kj<R ,且 k k k最小的数。

注意 { 0 ∣ ∗ } \{0|*\} {0} { ∗ ∣ 0 } \{*|0\} {0}都没有定义,定义前者为 ↑ \uparrow 表示一个极小的大于0的数,就是 A A A险胜;后面同理,设为 ↓ \downarrow 。且两者相加为 0 0 0 { ∗ ∣ ∗ } = 0 \{*|*\}=0 {}=0 { 0 ∣ 0 } = ∗ \{0|0\}=* {00}=


知道加法(对应游戏局面的并)

对于x,y两个游戏,
newL = { u + y | u ∈ L(x) } ∪ { x + v | v ∈ L(y) }
newR = { u + y | u ∈ R(x) } ∪ { x + v | v ∈ R(y) }
用“ { L ∣ R } \{L|R\} {LR}等价于 { m a x ( x ) , x i n L ∣ min ⁡ ( y ) , y i n R } \{max(x),x in L| \min(y),y in R\} {max(x)xinLmin(y)yinR}”来时刻维护 { L ∣ R } \{L|R\} {LR}集合的唯一

(感性理解, A 、 B A、B AB一定走最有利的一个局面)。

这就解决了绝大部分的问题。

还有一个好用的结论:设 S ( x ) S(x) S(x)为局面 x x x的权值。
S ( { a ∣ b } + { c ∣ d } ) S(\{a|b\}+\{c|d\}) S({ab}+{cd})= S { a ∣ b } S\{a|b\} S{ab}+ S { c ∣ d } S\{c|d\} S{cd}
想法就是你可以直接把集合映射为有理数,然后就跟集合无关了,直接在有理数的基础上进行操作。


下面是一些超现实数的记录。


公理

1.每个数都是用两个(由已有的数构成的)集合表示的,其中不存在 X L ≥ X R X^L \ge X^R XLXR

也就是说:其中 ∀ X L , X R , X L ! ≥ X R \forall X^L,X^R,X^L!\ge X^R XL,XR,XL!XR

2.定义 X ≤ Y X\le Y XY : 不存在 X L ≥ Y X^L\ge Y XLY,且 不存在 Y R ≤ X Y^R\le X YRX.递归定义

也就是说: ∀ X L ! ≥ B & & ∀ Y R ! ≤ X \forall X^L !\ge B\&\& \forall Y^R !\le X XL!B&&YR!X

X ≥ Y X \ge Y XY X ≤ Y X\le Y XY的对称形式,两者等价。

定义 α \alpha α {   ∣   } \{\ | \ \} {  } b e t a beta beta {   ∣ α } \{\ | \alpha \} { α} γ \gamma γ { α ∣   } \{\alpha | \ \} {α }


不等号

不等号的传递性: X ≤ Y , Y ≤ Z , X ≤ Z X\le Y,Y\le Z,X\le Z XY,YZ,XZ
性质1: X L ≤ X X^L \le X XLX
性质2: X ≤ X R X \le X^R XXR
性质3: X ≤ X X\le X XX
性质4: X ! ≤ Y = > X ≤ Y X!\le Y => X\le Y X!Y=>XY。换句话说, X ≤ Y X\le Y XY Y ≤ X Y\le X YX中至少有一个成立。可能两个同时成立。
不等号的完全性: X ≤ Y X\le Y XY Y ≤ X Y\le X YX至少有一个成立
在定义一下不等号不满足反对称性,即若 X ≤ Y , Y ≤ X X\le Y,Y\le X XY,YX,则 X = Y X=Y X=Y.

类:我们把形如 X ≤ Y , Y ≤ X X\le Y,Y\le X XY,YX X 、 Y X、Y XY归为一类。

加法

加法的定义:递归定义如下:
L = { u + y | u ∈ L(x) } ∪ { x + v | v ∈ L(y) }
R = { u + y | u ∈ R(x) } ∪ { x + v | v ∈ R(y) }
由定义可知, α = {   ∣   } \alpha =\{\ | \ \} α={  }是加法单位,也就是”0“。

可以证明加法满足交换律、结合律,以及若 X + Z ≤ Y + Z X+Z\le Y+Z X+ZY+Z,则 X ≤ Y X\le Y XY.

加法逆元的定义:记录 X X X的逆元为 − X -X X。递归定义如下:
L = { -u | u ∈ R(x) }
R = { -u | u ∈ L(x) }
加法逆元的性质:$X+ -X \le \alpha $ ,且$X+ -X \ge \alpha $

我们就可以把加法定义为类上。好处是反对称性、加法逆元也同时满足了。


*乘法(仅供了解)

乘法的定义:递归定义如下:
L = { u · y + x · v – u · v | u ∈ L(x), v ∈ L(y) } ∪ { u · y + x · v – u · v | u ∈ R(x), v ∈ R(y) }
R = { u · y + x · v – u · v | u ∈ L(x), v ∈ R(y) } ∪ { u · y + x · v – u · v | u ∈ R(x), v ∈ L(y) }

可见 α \alpha α仍然满足单位”0“的定义(在类意义下)。

由定义可知, γ = { α ∣   } \gamma=\{\alpha|\ \} γ={α }为乘法单位,也就是"1"。

可以证明乘法的交换律,结合律,对加法的分配律。

乘法逆元:记录 / X /X /X X X X的逆元。递归定义如下:
L = { 0 } ∪ { (1 + (u – x) · v) / u | u ∈ R(x), v ∈ L(x-1) } ∪ { (1 + (u – x) · v) / u | u ∈ L(x), v ∈ R(x-1)}
R = { (1 + (u – x) · v) / u | u ∈ L(x), v ∈ L(x-1) } ∪ { (1 + (u – x) · v) / u | u ∈ R(x), v ∈ R(x-1)}

注意,这里的乘法逆元可以无穷递归。后面会提到这一问题

乘法逆元的性质: X ∗ / X X*/X X/X γ \gamma γ属于同一类。

推论: β ∗ β = γ \beta * \beta =\gamma ββ=γ,也就是说, β \beta β可以看作原系统中的“-1".


进一步的

为了方便,我们用 0 , − 1 , 1 0,-1,1 0,1,1分别表示 α 、 β 、 γ \alpha 、\beta 、\gamma αβγ.

发现一个很神奇的事情:

{ L ∣ R } \{L|R\} {LR}等价于 { m a x ( x ) , x i n L ∣ min ⁡ ( y ) , y i n R } \{max(x),x in L| \min(y),y in R\} {max(x)xinLmin(y)yinR}

若没有则视为 { − I N F ∣ + I N F } \{-INF|+INF\} {INF+INF}.

博弈中的常用结论:

{ L ∣ R } \{ L|R\} {LR}的值为 j 2 k \frac{j}{2^k} 2kj,满足 L < j 2 k < R L<\frac{j}{2^k}<R L<2kj<R ,且其为 2 k 2^k 2k最小的, j 2 k \frac{j}{2^k} 2kj最接近 0 0 0的数。

{ 1 ∣ 2 } \{ 1|2\} {12} 就是 3 2 \frac{3}{2} 23 { − 3 ∣ 4 } \{-3|4\} {34}就是 0 0 0


不平等博弈的应用

我们将新的操作系统应用到不平等博弈中:

我们设有两个人在玩这个游戏,分别为 A A A B B B。我们站在 A A A的角度来看待此次博弈。

我们定义一个状态 X X X的值为 { L ∣ R } \{L|R\} {LR},其中 L L L是所有 A A A操作能到达的状态, R R R是所有 B B B操作能到达的状态。

这样的话,我们可以用一个数来衡量一个状态的优劣。

如果一个状态等于 0 0 0,则后手必胜。

如果一个状态 > 0 >0 >0,则 A A A必胜。

如果一个状态 < 0 <0 <0,则 B B B必胜。

绝对值的大小即为这个状态的优劣程度。

“*”的定义: { 0 ∣ 0 } \{0|0\} {00}.

之所以这样定义,是因为按照上面定义,这种状态无论谁先手都是必胜的。

那么他的权值等于什么呢?

答案是,他没有权值。

根据我们之前的结论, X ≥ X L , X ≤ X R X\ge X^L,X\le X^R XXL,XXR,

可得:

X + ∗ = X X+*=X X+=X,即任何数加 ∗ * 等于其本身。
∗ + ∗ = 0 *+*=0 +=0,即 ∗ * ∗ * 的加法逆元。

定义 ↑ \uparrow { 0 ∣ ∗ } \{0|*\} {0}, ↓ \downarrow { ∗ ∣ 0 } \{*|0\} {0}

发现 ↑ > 0 \uparrow>0 >0 ↓ < 0 \downarrow <0 <0,且任意一个数加上 ↑ \uparrow ↓ \downarrow 正负号不改变。

特别的, ∗ * ↑ \uparrow ↓ \downarrow 仍为 ∗ *

小技巧:涉及到 0 0 0 ∗ * 的时候,就将他带入"先手必胜"”后手必胜“中自己模拟一下。


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值