逗逗逗,一开始看错了题目,然后杯具了一个多小时。。。。。
看明白了题目还是思路还是很直观的。
首先若果两个点的在环之外就可以走到一起,很明显这就是最优解。
如果在环内的话,那么我们分找出两个点第一个进入环的祖先,很容易证明最优解一定是这两个祖先中的一个,然后。。。敲代码吧
#include <cstdio>
#include <cstring>
#include <algorithm>
using namespace std;
const int Maxn=500005;
int n,m,i,j,fa[Maxn][20],t,x,y,x1,y1,x2,y2,l,r,tot,N;
int v[Maxn],num[Maxn],nds[Maxn],cir[Maxn],lk[Maxn];
int q[Maxn],dep[Maxn],node[Maxn],next[Maxn],a[Maxn];
void add(int x,int y)
{ node[++tot]=y; next[tot]=a[x]; a[x]=tot; }
void init(){
for (j=1;j<19;j++)
for (i=1;i<=n;i++)
fa[i][j]=fa[ fa[i][j-1] ][j-1];
for (i=1;i<=n;i++)
if (!v[i]){
for (j=i;!v[j];j=fa[j][0]) v[j]=i;
if (v[j]<i) continue;
for (nds[++N]=0;cir[j]==0;j=fa[j][0])
num[j] = (++nds[ cir[j]=N ]), lk[j]=j;
}
memset(dep,10,sizeof(dep));
for (i=1;i<=n;i++)
if (cir[i]>0) dep[ q[++r]=i ]=1;
for (l=1;l<=r;l++){
for (i=a[q[l]];i;i=next[i])
if (dep[node[i]]>dep[q[l]]+1){
dep[ q[++r]=node[i] ]=dep[q[l]]+1;
cir[ q[r] ] = cir[ q[l] ];
lk [ q[r] ] = lk [ q[l] ];
}
}
}
int LCA(int x,int y){
if (dep[x]<dep[y]) swap(x,y);
for (int i=18;i>=0;i--)
if (dep[fa[x][i]]>dep[y]) x=fa[x][i];
if (dep[x]>dep[y]) x=fa[x][0];
for (int i=18;i>=0;i--)
if (fa[x][i]!=fa[y][i])
x=fa[x][i], y=fa[y][i];
if (x==y) return x;
return fa[x][0];
}
int way(int x,int y,int s){
if (y>x) return y-x;
return s+(y-x);
}
bool Judge(){
if (max(x1,y1)<max(x2,y2)) return 0;
if (max(x1,y1)>max(x2,y2)) return 1;
if (min(x1,y1)<min(x2,y2)) return 0;
if (min(x1,y1)>min(x2,y2)) return 1;
return !(x1>=y1 && x2<y2);
}
int main(){
freopen("ran.in","r",stdin);
freopen("ran.out","w",stdout);
scanf("%d%d",&n,&m);
for (i=1;i<=n;i++){
scanf("%d",&fa[i][0]);
add(fa[i][0],i);
}
init();
while (m--){
scanf("%d%d",&x,&y);
if (x==y) {printf("0 0\n"); continue;}
if (cir[x]!=cir[y])
{printf("-1 -1\n");continue;}
if (lk[x]==lk[y]){
t=LCA(x,y);
printf("%d %d\n",dep[x]-dep[t],dep[y]-dep[t]);
continue;
}
x1=dep[x]-1; y1=dep[y]-1+way(num[lk[y]],num[lk[x]],nds[cir[x]]);
x2=dep[x]-1+way(num[lk[x]],num[lk[y]],nds[cir[x]]); y2=dep[y]-1;
if (!Judge()) printf("%d %d\n",x1,y1);
else printf("%d %d\n",x2,y2);
}
return 0;
}