Chinese Remainder Theorem

中国剩余定理(CRT)用于求解同余方程组,当系数不互质时,可通过合并方程组的方式解决。通过扩展欧几里得算法求解k1,将方程组转化为更简洁的形式,最终合并所有同余方程以找到解。文中以hdu3579为例介绍了 CRT 的应用。
摘要由CSDN通过智能技术生成

用于求解同余方程组

x = ri (mod ai)   1<=i<=n

更一般的,我们来考虑如何解决ai不互质的情况

我们可以用合并方程组的方法来解决此类问题。

x = r1 (mod a1)

x = r2 (mod a2)

我们可以将上述方程写成另一种形式

x = k1*a1+r1

x = k2*a2+r2

我们可以得到

k1*a1+r1=k2*a2+r2

k1*a1 = r2-r1 (mod a2)

用扩展欧几里得可以求出k1

(程序中先默认求出k1*a1 = gcd(a1,a2)(mod a2) 的解,再求出k1 = k1'*( (r2-r1)/gcd ),过去这地方一直没看懂,擦擦擦 )

那么我么可以得到 x,方程组可以被合并成

x = (k1*a1+r1) (mod  a1*a2/gcd )

不断合并即可求解

献上入门题

hdu3579

#include <cstdio>
#include <cstring>
#include <algorithm>

using namespace std;
typedef long long LL;
int Case,n;
LL m1,r1,m2,r2,x,y;
LL m[100],r[100];

LL exgcd(LL a,LL b){
  if (b==0){
      x = 1; y = 0;
      return a;
  }
  LL ret = exgcd(b,
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值