用于求解同余方程组
x = ri (mod ai) 1<=i<=n
更一般的,我们来考虑如何解决ai不互质的情况
我们可以用合并方程组的方法来解决此类问题。
x = r1 (mod a1)
x = r2 (mod a2)
我们可以将上述方程写成另一种形式
x = k1*a1+r1
x = k2*a2+r2
我们可以得到
k1*a1+r1=k2*a2+r2
即
k1*a1 = r2-r1 (mod a2)
用扩展欧几里得可以求出k1
(程序中先默认求出k1*a1 = gcd(a1,a2)(mod a2) 的解,再求出k1 = k1'*( (r2-r1)/gcd ),过去这地方一直没看懂,擦擦擦 )
那么我么可以得到 x,方程组可以被合并成
x = (k1*a1+r1) (mod a1*a2/gcd )
不断合并即可求解
献上入门题
hdu3579
#include <cstdio>
#include <cstring>
#include <algorithm>
using namespace std;
typedef long long LL;
int Case,n;
LL m1,r1,m2,r2,x,y;
LL m[100],r[100];
LL exgcd(LL a,LL b){
if (b==0){
x = 1; y = 0;
return a;
}
LL ret = exgcd(b,