SVD-奇异值分解

本文详细介绍了奇异值分解(SVD)的概念,包括SVD实例、推导过程,以及与PCA的区别和联系。SVD在高维数据处理中具有重要作用,能用于降维、矩阵求逆和最小二乘问题等。PCA与SVD的主要区别在于SVD适用于非方阵,且在计算稳定性上优于PCA。SVD在信息检索、推荐系统等领域有广泛应用。
摘要由CSDN通过智能技术生成

PCA中的SVD,为什么要SVD?

面对维度高达 (10000x10000),可想而知耗费的计算量呈平方级增长,为此引出svd。

一、SVD实例

watermark,type_ZmFuZ3poZW5naGVpdGk,shadow_10,text_aHR0cHM6Ly9ibG9nLmNzZG4ubmV0L1poYW5nWGlhb3l1X3N5,size_16,color_FFFFFF,t_70

二、SVD推导

2.1特征值与奇异值有什么关系?

watermark,type_ZmFuZ3poZW5naGVpdGk,shadow_10,text_aHR0cHM6Ly9ibG9nLmNzZG4ubmV0L1poYW5nWGlhb3l1X3N5,size_16,color_FFFFFF,t_70

watermark,type_ZmFuZ3poZW5naGVpdGk,shadow_10,text_aHR0cHM6Ly9ibG9nLmNzZG4ubmV0L1poYW5nWGlhb3l1X3N5,size_16,color_FFFFFF,t_70

watermark,type_ZmFuZ3poZW5naGVpdGk,shadow_10,text_aHR0cHM6Ly9ibG9nLmNzZG4ubmV0L1poYW5nWGlhb3l1X3N5,size_16,color_FFFFFF,t_70

watermark,type_ZmFuZ3poZW5naGVpdGk,shadow_10,text_aHR0cHM6Ly9ibG9nLmNzZG4ubmV0L1poYW5nWGlhb3l1X3N5,size_16,color_FFFFFF,t_70

watermark,type_ZmFuZ3poZW5naGVpdGk,shadow_10,text_aHR0cHM6Ly9ibG9nLmNzZG4ubmV0L1poYW5nWGlhb3l1X3N5,size_16,color_FFFFFF,t_70

  • 1
    点赞
  • 7
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 2
    评论
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

原来是阿中

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值