目录
逻辑关系
【例 1】
两个约束至少满足其中一个
【模型 1】
定义 0-1 变量 y1 表示是否满足约束 1,y2 表示是否满足约束 2。
【模型 2】
只有 p 为 0-1 变量。
p 取 0 时,约束 1 成立;q 取 0 时,约束 2 成立。
缺点:如果问题拓展为,n 个约束满足 k 个,则无法表示。
【例 2】
由 0-1 变量 x1, x2, x3, x4 组成的两个向量 (x1, x2) 和 (x3, x4) 不等。
即
至少满足一个。
【模型】
定义 0-1 变量 y1 表示 x1>x3 成立,z1 表示 x1<x3 成立;
定义 0-1 变量 y2 表示 x2>x4 成立,z2 表示 x2<x4 成立。
【例 3】
if... then...
【模型】
【参考文献】
Hamdy A. Taha. Operations Research an Introduction 初级篇 Chapter 8
分段线性函数
【例】
【模型 1】
定义 0-1 变量 y1 表示 x 是否在 [-4, 1] 区间内,y2 表示是否在 [1, 5] 区间内。
定义辅助变量 x1 和 x2.
【模型 2】
定义 0-1 变量 z 表示 x 是否在第二个区间内。
【论文推荐】
Vielma J. P., Ahmed S. & Nemhauser G. (2010). Mixed-Integer Models for Nonseparable Piecewise-Linear Optimization: Unifying Framework and Extensions. Operations Research, 58(2), 303-315.
绝对值
【例】
取实数 d 的绝对值。
【模型】
定义 y 表示 d 是否大于 0,x表示 d 的绝对值。