Reference:
[1]https://github.com/rbgirshick/py-faster-rcnn/blob/master/lib/rpn/generate_anchors.py
事实上,在generate anchors的时候有两个步骤
步骤一:保持anchor的面积不变,但是改变长宽的比例。
步骤二:保持长宽的比例不变,但是进行scale的缩放,从而改变比例。
不论哪一步都不会改变anchors的中心点的坐标。在这个例子中都是ctr = (7.5,7.5)。
在本程序产生的9个anchors中,高宽比ratio分别是0.5,1,2,width和height都会改变,但是ctrs的坐标不变。
ratio = 0.521739130435
(184.0, 96.0, 7.5, 7.5)
ratio = 0.521739130435
(368.0, 192.0, 7.5, 7.5)
ratio = 0.521739130435
(736.0, 384.0, 7.5, 7.5)
ratio = 1.0
(128.0, 128.0, 7.5, 7.5)
ratio = 1.0
(256.0, 256.0, 7.5, 7.5)
ratio = 1.0
(512.0, 512.0, 7.5, 7.5)
ratio = 2.0
(88.0, 176.0, 7.5, 7.5)
ratio = 2.0
(176.0, 352.0, 7.5, 7.5)
ratio = 2.0
(352.0, 704.0, 7.5, 7.5)
源程序相对来说比较简单,generate_anchors控制程序产生9个不同scale和ratio的anchors,初始的框是(0,0,15,15),之后根据_ratio_enum生成三个中心坐标不变,但是ratio改变的anchors,三个不同ratio的anchors再分别_scale_enum生成不同尺寸的anchors,最后产生三种尺度三种比例的9个anchors。
_whctrs(anchors)的作用是找出一个anchor的宽高和中心坐标
_mkanchors是根据宽高和中心坐标,生成一个新的anchor
# --------------------------------------------------------
# Faster R-CNN
# Copyright (c) 2015 Microsoft
# Licensed under The MIT License [see LICENSE for details]
# Written by Ross Girshick and Sean Bell
# --------------------------------------------------------
import numpy as np
# Verify that we compute the same anchors as Shaoqing's matlab implementation:
#
# >> load output/rpn_cachedir/faster_rcnn_VOC2007_ZF_stage1_rpn/anchors.mat
# >> anchors
#
# anchors =
#
# -83 -39 100 56
# -175 -87 192 104
# -359 -183 376 200
# -55 -55 72 72
# -119 -119 136 136
# -247 -247 264 264
# -35 -79 52 96
# -79 -167 96 184
# -167 -343 184 360
#array([[ -83., -39., 100., 56.],
# [-175., -87., 192., 104.],
# [-359., -183., 376., 200.],
# [ -55., -55., 72., 72.],
# [-119., -119., 136., 136.],
# [-247., -247., 264., 264.],
# [ -35., -79., 52., 96.],
# [ -79., -167., 96., 184.],
# [-167., -343., 184., 360.]])
def generate_anchors(base_size=16, ratios=[0.5, 1, 2],
scales=2**np.arange(3, 6)):
"""
Generate anchor (reference) windows by enumerating aspect ratios X
scales wrt a reference (0, 0, 15, 15) window.
"""
base_anchor = np.array([1, 1, base_size, base_size]) - 1
ratio_anchors = _ratio_enum(base_anchor, ratios)
anchors = np.vstack([_scale_enum(ratio_anchors[i, :], scales)
for i in xrange(ratio_anchors.shape[0])])
return anchors
def _whctrs(anchor):
"""
Return width, height, x center, and y center for an anchor (window).
"""
w = anchor[2] - anchor[0] + 1
h = anchor[3] - anchor[1] + 1
x_ctr = anchor[0] + 0.5 * (w - 1)
y_ctr = anchor[1] + 0.5 * (h - 1)
return w, h, x_ctr, y_ctr
def _mkanchors(ws, hs, x_ctr, y_ctr):
"""
Given a vector of widths (ws) and heights (hs) around a center
(x_ctr, y_ctr), output a set of anchors (windows).
"""
ws = ws[:, np.newaxis]
hs = hs[:, np.newaxis]
anchors = np.hstack((x_ctr - 0.5 * (ws - 1),
y_ctr - 0.5 * (hs - 1),
x_ctr + 0.5 * (ws - 1),
y_ctr + 0.5 * (hs - 1)))
return anchors
def _ratio_enum(anchor, ratios):
"""
Enumerate a set of anchors for each aspect ratio wrt an anchor.
"""
w, h, x_ctr, y_ctr = _whctrs(anchor)
size = w * h
size_ratios = size / ratios
ws = np.round(np.sqrt(size_ratios))
hs = np.round(ws * ratios)
anchors = _mkanchors(ws, hs, x_ctr, y_ctr)
return anchors
def _scale_enum(anchor, scales):
"""
Enumerate a set of anchors for each scale wrt an anchor.
"""
w, h, x_ctr, y_ctr = _whctrs(anchor)
ws = w * scales
hs = h * scales
anchors = _mkanchors(ws, hs, x_ctr, y_ctr)
return anchors
if __name__ == '__main__':
import time
t = time.time()
a = generate_anchors()
print time.time() - t
print a