论文阅读
hello_pig1995
日有所进
展开
-
[论文阅读&翻译]Item-to-Item Collaborative Filtering
Amazon.com Recommendations Item-to-Item Collaborative Filtering个人感受:这篇论文首先介绍了历史上的三种算法:传统协同过滤、聚类、基于搜索的算法。第一种方法在计算效率、少量数据上表现欠佳;第二种方法准确率欠佳;第三种方法比较“简单”,因此提出了大量计算在线下的物品-物品的相似记录进行推荐。揣测一下作者的思路,计算量大是因为数原创 2016-05-08 17:42:47 · 3241 阅读 · 0 评论 -
[论文阅读] 信息协同过滤
信息协同过滤个人感受:逻辑清晰,内容完整,入门可以参看 我们要从海量数据中获取信息,其中涉及我们和信息两个方面,因此从获取信息的准确程度上来说可以从这两个方面做文章,而对于信息的挖掘,基本上已经差不多了,从人的角度思考,就发明了协同过滤这一算法。这一算法的产生原因可以说是:人们根据兴趣分类后的各种评价相似,因此可以根据已有的信息对于未知信息进行预测。这有诸多好处,比如搜索结果可以延原创 2016-05-08 17:43:05 · 410 阅读 · 0 评论 -
DeCAF: A Deep Convolutional Activation Featurefor Generic Visual Recognition阅读
DeCAF : CAFFE前身,但是在这篇文章中这不是重点,重点是在一个大型数据集合上进行训练的模型能否在其他数据集合上成功应用,因为有些领域数据集合时很少的,那么在这上面训练不现实,所以如果模型能够迁移,那么就非常牛逼了啊,于是首先作者复现了ALEXNET,不过top-1的准确率差了两个点,主要是对于图像的预处理不够,因为原来的图像是缩放之后剪裁,而作者是直接不管尺度多大,直接拉伸;以及grb的原创 2016-05-20 20:57:08 · 827 阅读 · 0 评论