ZOJ-4029

题意:对于每一次询问,求上式的值 

题解:把a排序,由于分母的范围很小 [2,30],可以枚举,对于每一次询问p,枚举分母 i 时,可以找出a中分母等于 i 的那一段,预,

处理前缀和,用于此时直接加。记得要卡内存。。。

如果 1<a[i]<=p ,那么 ceil(log p(a[i])) = 1 。

如果 p<a[i]<=p^2,那么 ceil(log p(a[i])) = 2 。

//#include<cstdio>
//#include<cstring>
//#include<algorithm>
//#include<iostream>
//#include<string>
//#include<vector>
//#include<stack>
//#include<bitset>
//#include<cstdlib>
//#include<cmath>
//#include<set>
//#include<list>
//#include<deque>
//#include<map>
//#include<queue>
#include<bits/stdc++.h>
using namespace std;
typedef long long ll;
const double PI = acos(-1.0);
const double eps = 1e-6;
const int INF = 1e9+7;
const int mod = 1e9;

ll a[500005],p[500005],sum[31][500005];

int main(){
	ll T,n,m;
	scanf("%d",&T);
	while(T--){
		scanf("%lld %lld",&n,&m);
		for(int i = 1 ; i <= n ; i++){
			scanf("%lld",&a[i]);
		}
		for(int i = 1 ; i <= m ; i++){
			scanf("%lld",&p[i]);
		}
		sort(a+1,a+1+n);
		for(int i = 1 ; i <= 30 ; i++){
			for(int j = 1 ; j <= n ; j++){
				sum[i][j] = sum[i][j-1]+a[j]/i;
			}
		}
		ll ans = 0;
		for(int j = 1 ; j <= m ; j++){
			ll ans1 = 0;
			ll pp = 1,cnt=1;
			for(int pos = 0, pos2 = 0; pp < a[n] ; ++cnt){
				pos2 = upper_bound(a+1, a+1+n, pp)-a-1;
				pp *= p[j];
				pos = upper_bound(a+1, a+1+n, pp)-a-1;
				ans1 = (ans1 + (sum[cnt][pos]-sum[cnt][pos2]))%mod;
			}
			ans = (ans + ans1*j%mod)%mod;
		}
		printf("%lld\n", (ans+mod)%mod);
	}
}

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值