题目链接:zoj 4029
用n^2不现实,考虑到某些数字对于用一个p的log值相等,所以可用二分解决
用到了c++的upper_bound,找到比当前值大的第一个数字在数组中的位置,然后一个前缀数组算出分子的和
#include<iostream>
#include<cstdio>
#include<vector>
#include<set>
#include<map>
#include<string.h>
#include<cmath>
#include<algorithm>
#include<queue>
#include<stack>
#define LL long long
#define mod 1000000000
#define inf 0x3f3f3f3f
#define sqr(a) (a)*(a)
#define For(i,m,n) for(int i=m;i<=n;i++)
#define Dor(i,n,m) for(int i=n;i>=m;i--)
#define lan(a,b) memset(a,b,sizeof(a))
using namespace std;
LL a[500010];
LL c[500010];
int b[500010][35];
int n,m;
int main()
{
int t;
scanf("%d",&t);
while(t--)
{
LL ans=0;
scanf("%d%d",&n,&m);
for(int i=1;i<=n;i++)scanf("%lld",&a[i]);
for(int i=1;i<=m;i++)scanf("%lld",&c[i]);
sort(a+1,a+1+n);
for(LL i=1;i<=n;i++)
for(LL j=1;j<=32;j++)
b[i][j]=(b[i-1][j]+a[i]/j)%mod;
for(int i=1;i<=m;i++)
{
LL ans1=1;
LL tem=0;
int p=1,q=0;
int j=1;
while(1)
{
int s=upper_bound(a+1,a+1+n,ans1)-a;
if(s>n) break;
p=upper_bound(a+1,a+1+n,ans1*c[i])-a;
if(s!=p)tem=(tem+b[p-1][j]-b[s-1][j])%mod;
j++;
// printf("%d %d %d %d\n",j,p,tem,ans1);
ans1*=c[i];
}
ans=(ans+i*tem)%mod;
}
printf("%lld\n",(ans+mod)%mod);
}
return 0;
}