zoj 4029 2018浙江省赛F Now Loading!!!

题目链接:zoj 4029

用n^2不现实,考虑到某些数字对于用一个p的log值相等,所以可用二分解决

用到了c++的upper_bound,找到比当前值大的第一个数字在数组中的位置,然后一个前缀数组算出分子的和

#include<iostream>
#include<cstdio>
#include<vector>
#include<set>
#include<map>
#include<string.h>
#include<cmath>
#include<algorithm>
#include<queue>
#include<stack>
#define LL long long
#define mod 1000000000
#define inf 0x3f3f3f3f
#define sqr(a) (a)*(a)
#define For(i,m,n) for(int i=m;i<=n;i++)
#define Dor(i,n,m) for(int i=n;i>=m;i--)
#define lan(a,b) memset(a,b,sizeof(a))

using namespace std;

LL a[500010];
LL c[500010];
int b[500010][35];
int n,m;


int main()
{
    int t;
    scanf("%d",&t);
    while(t--)
    {
        LL ans=0;
        scanf("%d%d",&n,&m);
        for(int i=1;i<=n;i++)scanf("%lld",&a[i]);
        for(int i=1;i<=m;i++)scanf("%lld",&c[i]);
        sort(a+1,a+1+n);
         for(LL i=1;i<=n;i++)
            for(LL j=1;j<=32;j++)
                b[i][j]=(b[i-1][j]+a[i]/j)%mod;
        for(int i=1;i<=m;i++)
        {
            LL ans1=1;
            LL tem=0;
            int p=1,q=0;
            int j=1;
            while(1)
            {
                int s=upper_bound(a+1,a+1+n,ans1)-a;
                if(s>n) break;
                p=upper_bound(a+1,a+1+n,ans1*c[i])-a;
                if(s!=p)tem=(tem+b[p-1][j]-b[s-1][j])%mod;
                j++;
               // printf("%d %d %d %d\n",j,p,tem,ans1);
                ans1*=c[i];
            }
            ans=(ans+i*tem)%mod;
        }
        printf("%lld\n",(ans+mod)%mod);
    }
    return 0;
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值