时间复杂度+空间复杂度 <详解>

1.1 算法效率

算法效率分为2种:

1.时间效率(时间复杂度):衡量的是一个算法的运行速度。

2.空间效率(空间复杂度):衡量一个算法所需要的额外空间。


 1.2 时间复杂度

1.2.1 概念: 算法中的基本操作的执行次数,为算法的时间复杂度。


1.2.2 计算方法:大O的渐进表示法

1、用常数1取代运行时间中的所有加法常数。

2、在修改后的运行次数函数中,只保留最高阶项。

3、如果最高阶项存在且不是1,则去除与这个项目相乘的常数。得到的结果就是大O阶。

  大O的渐进表示法去掉了那些对结果影响不大的项,简洁明了的表示出了执行次数


1.2.3 常见时间复杂度计算举例

 // 请计算一下func1基本操作执行了多少次?
void func1(int N){
    int count = 0;
    for (int i = 0; i < N ; i++) {
        for (int j = 0; j < N ; j++) {
            count++;
        }
    }
for (int k = 0; k < 2 * N ; k++) {
 count++;
 }
 int M = 10;
 while ((M--) > 0) {
 count++;
 }
 System.out.println(count);
 }

//时间复杂度O(N^2)


// 计算func2的时间复杂度?
void func2(int N) {
    int count = 0;
 
    for (int k = 0; k < 2 * N ; k++) {
        count++;
    }
 
    int M = 10;
    while ((M--) > 0) {
        count++;
    }
 
    System.out.println(count);
 }



//2N+10 
//时间复杂度O(N)

// 计算func3的时间复杂度?
void func3(int N, int M) {
    int count = 0;
 
    for (int k = 0; k < M; k++) {
        count++;
    }
 
    for (int k = 0; k < N ; k++) {
        count++;
    }
 
    System.out.println(count);
 }

//时间复杂度O(M+N)


 // 计算bubbleSort的时间复杂度?
void bubbleSort(int[] array) {
    for (int end = array.length; end > 0; end--) {
        boolean sorted = true;
        for (int i = 1; i < end; i++) {
            if (array[i - 1] > array[i]) {
                Swap(array, i - 1, i);
                sorted = false;
            }
        }
 
        if (sorted == true) {
            break;
        }
    }
 }

//时间复杂度O(N^2)


// 计算binarySearch的时间复杂度?
int binarySearch(int[] array, int value) {
    int begin = 0;
    int end = array.length - 1;
    while (begin <= end) {
        int mid = begin + ((end-begin) / 2);
        if (array[mid] < value)
            begin = mid + 1;
        else if (array[mid] > value)
            end = mid - 1;
        else
            return mid;
    }
 
    return -1;
 }

 


// 计算阶乘递归factorial的时间复杂度?
long factorial(int N) {
    return N < 2 ? N : factorial(N-1) * N;
 }


// 计算斐波那契递归fibonacci的时间复杂度?
int fibonacci(int N) {
    return N < 2 ? N : fibonacci(N-1)+fibonacci(N-2);
 }

//时间复杂度:O(2^N)


1.3 空间复杂度 

1.3.1 概念:一个算法在运行过程中临时占用存储空间大小的量度。空间复杂度算的是变量的个数,空间复杂度计算规则基本跟时间复杂度类似,也使用大O渐进表示法.


1.3.2 空间复杂度计算举例

 // 计算bubbleSort的空间复杂度?
void bubbleSort(int[] array) {
    for (int end = array.length; end > 0; end--) {
        boolean sorted = true;
        for (int i = 1; i < end; i++) {
            if (array[i - 1] > array[i]) {
                Swap(array, i - 1, i);
                sorted = false;
            }
        }
 
        if (sorted == true) {
            break;
        }
}
}

//使用了常数个额外空间,所以空间复杂度为 O(1)

// 计算fibonacci的空间复杂度?
int[] fibonacci(int n) {
 long[] fibArray = new long[n + 1];
 fibArray[0] = 0;
 fibArray[1] = 1;
 for (int i = 2; i <= n ; i++) {
 fibArray[i] = fibArray[i - 1] + fibArray [i - 2];
 }
 return fibArray;
 }

//动态开辟了N个空间,空间复杂度为 O(N)

// 计算阶乘递归Factorial的空间复杂度?
long factorial(int N) {
 return N < 2 ? N : factorial(N-1)*N;
 }

//递归调用了N次,开辟了N个栈帧,每个栈帧使用了常数个空间。空间复杂度为O(N)

  • 5
    点赞
  • 6
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值