连珠线 题解

连珠线 题解

一、题目

给定一棵树,树的每一条边上有一个权值;

现从树中选出多组由两条边相连的三个相邻的点,且每个点只能选一次,求所选边权值之和最大值;

二、分析

可知,每一组点形态有以下红蓝两种情况,

可以发现,若将根移动之后,蓝色圈情况可化为红色圈情况,其走向为 s o n [ x ] − x − f a t h e r [ x ] son[x] - x - father[x] son[x]xfather[x]

所以考虑 换根DP ;

先考虑以一个节点为根如何计算答案;

则对于三点的中间点,由于其连接两条边,所以可以将其看作此组点的关键点;

所以定义状态 d p [ i ] [ 1 / 0 ] dp[i][1/0] dp[i][1/0] 表示以 i i i 为根节点的子树中, i i i 为 / 不为三点中点时答案最大值;

则枚举 i i i 的子节点 v v v

对于 d p [ i ] [ 0 ] dp[i][0] dp[i][0] ,则 v v v 可为也可不为中点,所以有
d p [ i ] [ 0 ] = ∑ m a x { d p [ v ] [ 0 ] ,    d p [ v ] [ 1 ] + e [ i ] [ v ] } dp[i][0] = \sum{ max\{dp[v][0], \; dp[v][1] + e[i][v]\} } dp[i][0]=max{dp[v][0],dp[v][1]+e[i][v]}
对于 d p [ i ] [ 1 ] dp[i][1] dp[i][1] ,则应选择一个 v v v ,使其与 i i i 成为一组点中的两个,则其一定不能为中点,且一定选 ( i , v ) (i, v) (i,v) 边;

则其转变后为 d p [ v ] [ 0 ] + e [ i ] [ v ] dp[v][0] + e[i][v] dp[v][0]+e[i][v]

由于 d p [ i ] [ 1 ] dp[i][1] dp[i][1] 可包含 d p [ i ] [ 0 ] dp[i][0] dp[i][0] 所有情况,所以还要减去 v v v 之前的贡献,即 m a x { d p [ v ] [ 0 ] ,    d p [ v ] [ 1 ] + e [ i ] [ v ] } max\{dp[v][0], \; dp[v][1] + e[i][v]\} max{dp[v][0],dp[v][1]+e[i][v]}

又由于 i i i 只能为一组点的中点,所以选取变化后贡献最大的;

则有
d p [ i ] [ 1 ] = d p [ i ] [ 0 ] + max ⁡ { d p [ v ] [ 0 ] + e [ i ] [ v ] − m a x { d p [ v ] [ 0 ] ,    d p [ v ] [ 1 ] + e [ i ] [ v ] } } dp[i][1] = dp[i][0] + \max \{ dp[v][0] + e[i][v] - max\{dp[v][0], \; dp[v][1] + e[i][v]\} \} dp[i][1]=dp[i][0]+max{dp[v][0]+e[i][v]max{dp[v][0],dp[v][1]+e[i][v]}}
由此可得定根下的答案;

考虑如何换根;

则对于跟节点 i i i ,现要将根换到其子节点 v v v ,则;

整棵树分为了两部分,对于根节点为 v v v 的部分,其答案为 d p [ v ] [ 0 ] dp[v][0] dp[v][0]

对于其余部分,现已知以 i i i 为根节点答案,

首先,因为根节点为 v v v 的部分已独立出去了,所以应将其的贡献从以 i i i 为根节点答案中减去;

定义数组 d p 1 [ i ] [ 1 / 0 ] dp1[i][1/0] dp1[i][1/0] 表示这部分中 i i i 为 / 不为中点的答案, d p 2 [ i ] dp2[i] dp2[i] 表示以 i i i 为根节点的答案;

所以有
d p 1 [ i ] [ 0 ] = d p 2 [ i ] − m a x ( d p [ v ] [ 0 ] , d p [ v ] [ 1 ] + e [ i ] [ v ] ) ; dp1[i][0] = dp2[i] - max(dp[v][0], dp[v][1] + e[i][v]); dp1[i][0]=dp2[i]max(dp[v][0],dp[v][1]+e[i][v]);
以及
d p 1 [ i ] [ 1 ] = d p 1 [ i ] [ 0 ] + m a x n [ i ] ; dp1[i][1] = dp1[i][0] + maxn[i]; dp1[i][1]=dp1[i][0]+maxn[i];
其中, m a x n [ i ] maxn[i] maxn[i] 表示以 i i i 为根节点的 m a x { d p [ v ] [ 0 ] ,    d p [ v ] [ 1 ] + e [ i ] [ v ] } } max\{dp[v][0], \; dp[v][1] + e[i][v]\} \} max{dp[v][0],dp[v][1]+e[i][v]}} ,在第一次 DP 时记录一下即可;

但注意,

有可能 m a x n [ i ] maxn[i] maxn[i] 所指节点刚好为要换到的根,则此时应用次大值来转移;

所以在第一次 DP 时应同时记录 m a x { d p [ v ] [ 0 ] ,    d p [ v ] [ 1 ] + e [ i ] [ v ] } } max\{dp[v][0], \; dp[v][1] + e[i][v]\} \} max{dp[v][0],dp[v][1]+e[i][v]}} 的最大与次大值;

在得到 d p 1 dp1 dp1 后,由于 i i i 此时不再为根节点,所以其可以与其父节点 f a fa fa 成为中点 ( i i i 不为总根),或为原始中点;

所以同转移,其又会产生 d p 1 [ f a ] [ 0 ] + w [ f a ] [ i ] − m a x ( d p 1 [ f a ] [ 0 ] , d p 1 [ f a ] [ 1 ] + w [ f a ] [ i ] ) dp1[fa][0] + w[fa][i] - max(dp1[fa][0], dp1[fa][1] + w[fa][i]) dp1[fa][0]+w[fa][i]max(dp1[fa][0],dp1[fa][1]+w[fa][i]) 的贡献;

将两种情况取最大值即可;

综上,有 d p 2 [ v ] = d p [ v ] [ 0 ] + m a x ( d p 1 [ i ] [ 0 ] , d p 1 [ i ] [ 1 ] + e [ i ] [ v ] ) dp2[v] = dp[v][0] + max(dp1[i][0], dp1[i][1] + e[i][v]) dp2[v]=dp[v][0]+max(dp1[i][0],dp1[i][1]+e[i][v])

最终在统计答案即可;

三、代码

#include <cstdio>
#include <vector>
#include <cstring>
#include <algorithm>
using namespace std;
const int MAXN = 200005;
const int INF = 2147483647;
int n, a[MAXN];
int dp[MAXN][5], dp1[MAXN][5], dp2[MAXN], ans, vg[MAXN];
int maxn[MAXN], n_maxn[MAXN], pos[MAXN];
bool flag[MAXN];
struct edge {
	int to, tot;
};
vector <edge> g[MAXN];
void dfs(int i) {
	flag[i] = true;
	maxn[i] = n_maxn[i] = -INF;
	int to;
	for (int t = 0; t < g[i].size(); t++) {
		int v = g[i][t].to, tot = g[i][t].tot;
		if (!flag[v]) {
			dfs(v);
			vg[v] = tot;
			
			dp[i][0] += max(dp[v][0], dp[v][1] + tot);
			to = dp[v][0] + tot - max(dp[v][0], dp[v][1] + tot);
			
			if (to > maxn[i]) n_maxn[i] = maxn[i], maxn[i] = to, pos[i] = v;
			else if (to > n_maxn[i]) n_maxn[i] = to;
		
		}
	}
	dp[i][1] = dp[i][0] + maxn[i]; // 选最大 
	
	flag[i] = false;
	return;
}
void dfs1(int i, int fa) {
	flag[i] = true;
	for (int t = 0; t < g[i].size(); t++) {
		int v = g[i][t].to, tot = g[i][t].tot;
		if (!flag[v]) {
			if (pos[i] == v) swap(maxn[i], n_maxn[i]); // v 在最大上 换次大 
		
			dp1[i][0] = dp2[i] - max(dp[v][0], dp[v][1] + tot); // 减去 v 做贡献 
			dp1[i][1] = dp1[i][0] + maxn[i];
			
			if (fa != -1) dp1[i][1] = max(dp1[i][1], dp1[i][0] + dp1[fa][0] + vg[i] - max(dp1[fa][0], dp1[fa][1] + vg[i])); // i 重做中点  
			
			dp2[v] = dp[v][0] + max(dp1[i][0], dp1[i][1] + tot);
			
			if (pos[i] == v) swap(maxn[i], n_maxn[i]); // 还原 
			
			dfs1(v, i);
		}
	}
	
	ans = max(ans, dp2[i]);
	return;
}
int main() {
	scanf("%d", &n);
	for (int i = 1; i < n; i++) {
		int x, y, z;
		scanf("%d %d %d", &x, &y, &z);
		g[x].push_back(edge({y, z}));
		g[y].push_back(edge({x, z}));
	}
	dfs(1); // 初始根 
	ans = dp2[1] = dp[1][0];
	dfs1(1, -1); // 换根 
	printf("%d\n", ans);
	return 0;
}
  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
OD流水线是一种用于目标检测的深度学习模型,主要用于在图像或视频中识别和定位物体。它通过将输入图像或视频分成小块,并对每个块进行分类和定位,从而实现目标检测的功能。 Python题解是指使用Python编程语言来解决OD流水线中的问题。Python是一种简单易学、功能强大的编程语言,因其易读性和丰富的库而受到广泛应用。 在OD流水线的Python题解中,一般会使用相关的Python库和工具来实现目标检测的各个步骤。首先,需要使用OpenCV或PIL库加载和处理输入的图像或视频数据。然后,需要使用一种深度学习框架,例如TensorFlow或PyTorch,加载预训练的OD模型。接下来,将输入的图像数据传入模型中进行推理,并获取每个目标的类别和位置信息。最后,可以根据需要对检测到的目标进行后续处理,如绘制边界框、标注类别等。 在OD流水线的Python题解中,还可以使用其他辅助工具和技术来提升检测性能。例如,可以使用图像增强技术来提高输入图像的质量,或者使用非极大值抑制算法来去除重叠的边界框。此外,还可以根据具体应用场景进行模型微调或优化,以提高模型在特定数据集上的检测准确率和速度。 总之,OD流水线的Python题解是一种使用Python编程语言实现目标检测的方法。通过使用相关的Python库和工具,结合深度学习模型和其他辅助技术,可以实现高效、精确的目标检测功能。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值