SQL项目实战
1.数据集介绍
来源:kaggle
本数据集包含了2016年至2018年近10万条交易记录。
本次分析用到五张表:
- olist_orders_dataset:包含订单id,顾客id,订单状态,购买时间等信息
- olist_order_items_dataset:包含订单id,物品数量,商品id,商品价格和运费等信息
- olist_order_reviews_dataset:包含评论id,订单id,评价分数等信息
- olist_products_dataset:包含商品id,商品品类等商品信息
- product_category_name_translation:包含商品品类和商品品类的英文翻译
分析目的:
1.分析流量业务指标:活跃用户数(DAU、MAU、时段)GMV(季度、月)、ARPU(季度、月)、订单数(天、月、时段)
2.RFM用户价值分层模型分析用户运营:各分层次用户品类(热门商品=金额➕评价分数)
分析工具:
用my sql,navivat进行数据清洗,数据分析;
tableau进行数据可视化
分析结论:
1.平台运营建议:综合订单数、MAU和GMV指标来看,平台当前遇到发展瓶颈,典型表现为用户平均收入水平维持,指标增速放缓,甚至出现回落的趋势。
从用户规模来看,需评估国内市场流量增长是否进入存量竞争阶段,如果是,可以考虑发展海外市场,同时做好用户运营,减少用户流失;
如果否,则可能与平台自身运营进入瓶颈期,或竞争对手抢占市场导致,一方面需要对内调整运营策略,优化用户体验&#