sql实战-电商订单数据分析

本文通过SQL清洗和分析电商订单数据,使用Navicat和Tableau进行数据可视化。发现平台面临用户增长瓶颈,建议发展海外市场,加强用户运营。活跃用户数和订单数在17年11月达到峰值,之后增长趋缓。GMV在18年Q3负增长,ARPU下滑。RFM模型显示重要用户比例较低,建议提升用户消费频率,优化商品推荐策略。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

SQL项目实战

1.数据集介绍

来源:kaggle

本数据集包含了2016年至2018年近10万条交易记录。

本次分析用到五张表:

  • olist_orders_dataset:包含订单id,顾客id,订单状态,购买时间等信息 
  • olist_order_items_dataset:包含订单id,物品数量,商品id,商品价格和运费等信息 
  • olist_order_reviews_dataset:包含评论id,订单id,评价分数等信息 
  • olist_products_dataset:包含商品id,商品品类等商品信息 
  • product_category_name_translation:包含商品品类和商品品类的英文翻译

分析目的

1.分析流量业务指标:活跃用户数(DAU、MAU、时段)GMV(季度、月)、ARPU(季度、月)、订单数(天、月、时段)

2.RFM用户价值分层模型分析用户运营:各分层次用户品类(热门商品=金额➕评价分数)

分析工具:

用my sql,navivat进行数据清洗,数据分析;

tableau进行数据可视化

分析结论:

1.平台运营建议:综合订单数、MAU和GMV指标来看,平台当前遇到发展瓶颈,典型表现为用户平均收入水平维持,指标增速放缓,甚至出现回落的趋势。

从用户规模来看,需评估国内市场流量增长是否进入存量竞争阶段,如果是,可以考虑发展海外市场,同时做好用户运营,减少用户流失;

如果否,则可能与平台自身运营进入瓶颈期,或竞争对手抢占市场导致,一方面需要对内调整运营策略,优化用户体验&#

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值