【SQL实战项目】电商平台数据分析项目

本文通过分析淘宝用户行为数据,运用SQL进行数据处理和模型构建,探讨了电商指标体系、用户行为及商品流量。通过流量漏斗、复购率和RFM模型,揭示了用户转化率、高价值用户特征以及商品流量分布。分析指出,流量在双12预热期间增长,夜间流量较高,用户加购后购买转化率较收藏高,用户分层中高复购率显示用户忠诚度高,商品流量主要受长尾效应影响,且大部分商品购买与浏览量较低,需要优化广告策略和精准推送。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

一.分析背景和目的

背景介绍

电商平台数据分析是最为典型的一个数据分析赛道,且电商数据分析有着比较成熟的数据分析模型,比如:人货场模型。此文中我将通过分析国内最大的电商平台——淘宝的用户行为,来巩固数据分析技能以及思维。通过分析用户行为,以此来实现精准营销,总结现有问题,获得业务增长。

数据源

数据源:阿里云天池数据集

数据说明

该数据集包含了2017年11月25日至2017年12月3日之间,有行为的约一百万随机用户的所有行为(行为包括点击、购买、加购、喜欢)。

二.分析框架和思路

数据分析的关键是指标体系的建立,从什么角度着手去达成数据分析的目的,在此次数据分析中,是对淘宝用户行为进行一个分析,而在电商用户行为分析中最常用的是“人货场”模型,人:即用户角度;货:即商品角度;场:即卖场,电商平台指标体系角度。
在这里插入图片描述

2.1场:电商指标体系角度

电商指标体系维度可以参见一些常见的指标:流量(包括总体流量,每日流量,每时流量),流量漏斗转换,复购率,跳失率。然后下面对每一个概念进行解释:
知识点1:衡量流量的指标为UV,PV,关于他们的解释参考这个链接。如何清除的理解UV和PV的定义
知识点2:流量漏斗转化模型的介绍
知识点3:跳出率
知识点4:重复购买率

2.2人:用户角度

从用户角度,可以采用用户转化漏斗模型和RFM用户分层模型,了解用户转化率,以及高价值用户。

2.3货:商品角度

知识点1:SKU的解释
商品角度可以从SKU下单量,SKU浏览量进行商品流量分析,结合浏览量和下单量对商品进行流量四象限分析。

三.分析主体

数据分析流程包括:
提出问题–理解数据-数据处理和清洗–构建模型-数据可视化

3.1提出问题

  • 用户在哪个环节流失以及流失的原因
  • 如何提升用户转化率
  • 哪些用户是高价值用户
  • 基于用户分层如何进行精准运营
  • 哪些商品是畅销商品
  • 商品流量随着时间段的变化

3.2理解数据

  • 用户ID:整数类型,序列化后的用户ID;
  • 商品ID:整数类型,序列化后的商品ID;
  • 商品类目ID:整数类型,序列化后的商品所属类目ID
  • 行为类型:字符串,包括(“pv”:相当于点击,“buy”:商品购买,“cart”:将商品加入购物车,“fav”:收藏商品)
  • 时间戳:行为发生的时间戳

3.3数据处理和清洗

3.3.1数据导入

这里分析的数据量为10w+,如果用excel进行分析的话,超出excel的承载,无法进行有效分析,因此这里使用了数据库管理软件Navicat进行分析处理。

(1)新建数据库在这里插入图片描述
(2)导入数据源
在这里插入图片描述

3.3.2去除重复值

去除重复值这里,可以将user_id,item_id,timestamp三者进行联合,形成联合主键,对数据集进行分组。如果数据集中没有重复值,则理论上用三者进行联合分组之后,
count(user_id)应该是不大于1的;如果数据集中有重复值,则理论上用三者进行联合分组之后,count(user_id)应该是大于1的。因此在这里判断count(user_id)是否大于1可以用having函数。

SELECT use_id FROM userbavior
GROUP BY user_id,item_id,timestamp
HAVING COUNT(user_id)>1

SQL查询结果如下:

在这里插入图片描述

结果显示没有重复值。

3.3.3查看缺失值

在查看缺失值板块,可以统计每一个字段下有多少行,如果行数是相等的说明没有缺失值。(对应于python数据分析中,可以用pandas库中的info()函数,来判断是否存在缺失值)。

SELECT COUNT(user_id),COUNT(item_id),COUNT(category_id),COUNT(behavior_type),COUNT(timestamp)
FROM userbehavior;

在这里插入图片描述

从查询结果来看,不存在缺失值,数据质量高。

3.3.4时间格式转换

数据库中时间以int类型进行储存,对于分析师来说非常的棘手,如何将整数类型的时间转换为肉眼能读懂的时间格式呢?可以采用如下函数。
采用函数:FROM_UNIXTIME
作用:将MYSQL中以INT(11)存储的时间以"YYYY-MM-DD"格式来显示。
这里用到的知识点:MYSQL格式时间戳函数:FROM_UNIXTIME

#新增date,hour时间列
ALTER TABLE userbehavior
ADD date VARCHAR(20),
ADD hour VARCHAR(20);
#时间格式转换
#将hour列的时间转换为-年-月-日
UPDATE userbehavior SET date = FROM_UNIXTIME(timestamp,'%Y-%m-%d');
#将hour列的时间转换为-时
UPDATE userbehavior SET hour = FROM_UNIXTIME(timestamp,'%H');timestamp列的时间转换为------UPDATE userbehavior SET timestamp = FROM_UNIXTIME(timestamp,'%Y-%m-%d %H:%i:%S');

运行结果如下:

在这里插入图片描述

3.3.5剔除异常值

#剔除异常值
#排除日期不在2017-11-25到2017-12-3这9天的数据
DELETE FROM userbehavior
WHERE date <'2017-11-25' or date >'2017-12-03'

检查下是否将异常值剔除干净

SELECT MAX(date),MIN(date) FROM userbehavior;

运行结果如下:
在这里插入图片描述

3.4构建模型

3.4.1电商数据指标分析
3.4.1.1 总体流量分析

总体流量可以从以下几个指标分析:
在这里插入图片描述
SQL查询语句如下:

SELECT
COUNT(DISTINCT user_id) AS UV,
SUM(CASE behavior_type WHEN 'pv' THEN 1 ELSE 0 END) AS PV,
SUM(CASE behavior_type WHEN 'fav' THEN 1 ELSE 0 END) AS 总收藏数量,
SUM(CASE behavior_type WHEN 'cart' THEN 1 ELSE 0 END) AS 总加购数量,
SUM(CASE behavior_type WHEN 'buy' THEN 1 ELSE 0 END) 
### Python 电商数据分析项目示例 #### 数据获取与准备 为了进行有效的电商数据分析,通常会先收集电商平台上的商品信息。这可以通过网页抓取来完成[^2]。一旦获得了原始数据,就需要利用 `Pandas` 库来进行清洗和整理工作。 ```python import pandas as pd # 假设我们有一个CSV文件包含了电商交易记录 data = pd.read_csv('ecommerce_data.csv') # 查看前几行的数据结构 print(data.head()) ``` #### 销售额统计分析 接着,可以计算各产品的总销售额,并对其进行排序以便找出最畅销的产品[^3]: ```python # 计算每种产品的总销量(价格乘以数量) product_sales = data.groupby('product_name').agg({'price': sum, 'quantity': sum}) product_sales['total_sales'] = product_sales['price'] * product_sales['quantity'] # 对产品按销售额降序排列 product_sales_sorted = product_sales.sort_values(by='total_sales', ascending=False) # 显示排名前十的商品及其销售额 top_products = product_sales_sorted[['total_sales']].head(10) print(top_products) ``` #### 可视化展示结果 最后一步是将上述分析的结果可视化出来,这里采用的是 `Matplotlib` 来绘制柱状图表示不同产品的销售业绩[^1]: ```python import matplotlib.pyplot as plt plt.figure(figsize=(10, 6)) plt.barh(y=top_products.index, width=top_products.total_sales.values) plt.title('Top Selling Products') plt.xlabel('Total Sales (Price * Quantity)') plt.ylabel('Product Name') plt.tight_layout() plt.show() ``` 此过程不仅展示了如何运用Python中的多个流行库执行完整的电子商务数据分析流程——从数据采集到最终呈现;同时也强调了在实践中灵活应用各种技术和方法的重要性。
评论 9
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值