致谢

本文讲述了作者作为技术专家指导他人的经历,强调了团队合作在完成书籍项目中的重要性,以及分享知识如何提升效率和满意度。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

< 回到目录


致谢

本书的完成离不开我所指导过的人和指导我的人,包括Chris Barber、Misha Talavera、Ryan Breslow、Alex MacCaw、Karissa Paddie、Naval Ravikant、Brian Armstrong、Tatiana Dorow、Alexander Kasser以及Stephen和Mary Mochary。

在完成本书的过程中,大家都付出了很多努力。Chris Barber“找到”了我,并邀请我指导他的斯坦福大学室友,这推动了我的指导生涯。我指导过的Misha、Ryan和Alex驱使我将这些文字呈现给大家;某些我没有动力写的部分是由Misha完成的,通过Ryan我认识了Karissa,Alex则在征得我的许可后终于将其推出。Karissa每周与我一同花费数小时,终于完成了文字的定稿和组织我的社交媒体内容。Naval读了一份早期草稿,并说这是他见过的最好的商业书籍(无论真假,这是他告诉我的),进一步鼓励我将其推向世界。Brian也读了一份早期草稿,并基于此邀请我指导他。我的妻子Tatiana,嗯,和她在一起我每天都很开心。Alexander,我的祖父,在激励着我,让我感受到只要努力,我将永远不会失败。Stephen和Mary,我的父母,一直是我最大的支持者。

对我而言,本书在接近完成时是最困难的时刻。我非常享受本书的写作过程。但最后的编辑和格式化阶段感觉像是“繁重的工作”。幸运的是,Karissa和Alex帮助我完成了这些任务。

作为一个团队,我们被信息分享的愿景推动:让CEO的工作和公司的运转能够更高效、更有效。

有机会与这么多了不起的人一起工作,我感到自豪和感激。我指导的所有人可能会说我为他们的生活增添了价值。另一方面,他们也已经从根本上改变了我的生活,使其充满无尽的快乐。是的,我经常感激他们,我相信他们也知道这一点。

我对你的愿望是,有一天你也能有机会体验指导他人的快乐。这是我迄今为止在生活中找到的最令人满足的活动。如果你知道有什么更令人满足的事情,欢迎与我分享!


< 回到目录

分数阶傅里叶变换(Fractional Fourier Transform, FRFT)是对传统傅里叶变换的拓展,它通过非整数阶的变换方式,能够更有效地处理非线性信号以及涉及时频局部化的问题。在信号处理领域,FRFT尤其适用于分析非平稳信号,例如在雷达、声纳和通信系统中,对线性调频(Linear Frequency Modulation, LFM)信号的分析具有显著优势。LFM信号是一种频率随时间线性变化的信号,因其具有宽频带和良好的时频分辨率,被广泛应用于雷达和通信系统。FRFT能够更精准地捕捉LFM信号的时间和频率信息,相比普通傅里叶变换,其性能更为出色。 MATLAB是一种强大的数值计算和科学计算工具,拥有丰富的函数库和用户友好的界面。在MATLAB中实现FRFT,通常需要编写自定义函数或利用信号处理工具箱中的相关函数。例如,一个名为“frft”的文件可能是用于执行分数阶傅里叶变换的MATLAB脚本或函数,并展示其在信号处理中的应用。FRFT的正确性验证通常通过对比变换前后信号的特性来完成,比如评估信号的重构质量、信噪比等。具体而言,可以通过计算原始信号与经过FRFT处理后的信号之间的相似度,或者对比LFM信号的关键参数(如初始频率、扫频率和持续时间)是否在变换后得到准确恢复。 在MATLAB代码实现中,通常包含以下步骤:首先,生成LFM信号模型,设定其初始频率、扫频率、持续时间和采样率等参数;其次,利用自定义的frft函数对LFM信号进行分数阶傅里叶变换;接着,使用MATLAB的可视化工具(如plot或imagesc)展示原始信号的时域和频域表示,以及FRFT后的结果,以便直观对比;最后,通过计算均方误差、峰值信噪比等指标来评估FRFT的性能。深入理解FRFT的数学原理并结合MATLAB编程技巧,可以实现对LFM信号的有效分析和处理。这个代码示例不仅展示了理论知识在
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值