莫凡Python学习笔记——PyTorch动态神经网络(二)

内容原文:https://morvanzhou.github.io/tutorials/machine-learning/torch/

利用PyTorch搭建神经网络

神经网络可以使用PyTorch的torch.nn包来构建。
autograd实现了反向传播的功能,但是直接用来深度学习的代码在很多情况下还是稍显复杂。
torch.nn是专门为神经网络设计的模块化接口,nn构建于autograd之上,可以用来定义和运行神经网络。nn.Moudle是nn中最重要的类,可把它看成是一个网络的封装,包含网络各层定义以及forward方法,调用forward(input)方法,可返回前向传播的结果。

一个典型的神经网络训练过程如下:

  • 定义具有一些可学习参数(或权重)的神经网络
  • 迭代输入数据集
  • 通过网络处理输入
  • 计算损失(输出的预测值于实际值之间的距离)
  • 将梯度传播回网络
  • 更新网络的权重,通常使用一个简单的更新规则:weight = weight - learning_rate * gradient

1、Variable变量
在神经网络里,数据都是Variable变量的形式,是把tensor的数据放入神经网络的variable变量中,来慢慢更新神经网络中的参数。

import torch
from torch.autograd import Variable

tensor = torch.FloatTensor([[1,2],[3,4]])
variable = Variable(tensor,requires_grad=True)  #用Variable将tensor放入variable变量中

这里写图片描述
运行结果:

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值
>