代码随想录 day 16 | 树左下角的值 路径总和 中序后序构造二叉树

513 树左下角的值

 给定一个二叉树,在树的最后一行找到最左边的值。

这个题是左边边的值,并不是左子树,右子树的也可以,不然理解错了。

这个题用层序遍历的方式是很简单的,到最后一层,取第一个,就行了

层序遍历

def findBottomLeftValue(root):
    
    from collections import deque
    queue = deque([root])
    
    result = 0

    while queue:
        for i in range(len(queue)):
            node = queue.popleft()

            if i == 0:
                result = node.val

            if node.left:
                queue.append(node.left)

            if node.right:
                queue.append(node.right)

    return result

递归遍历

说到要找最左边,采用遍历方式前序遍历就可以 

核心在于 最低层 最左边 

递归三部曲:

1. 递归参数和返回值 因为要计算深度 因此参数是节点和深度

2. 递归中止条件:

      not node 返回

      叶子节点,判断当前深度 进行赋值,在这里,因为我们加了判断深度,且优先遍历左子树,如果左边有叶子节点满足,赋值了,那么之后同一层的叶子节点由于高度一样,不会再次被赋值

      左子树

      右子树

 

class solution:
    def findBottomLeftValue(self, root):
        if not root:
            return None
        self.max_depth = -1
        self.result = 0
        self.dfs(root, 0)
        return self.result
    
    def dfs(self, root, depth):
        if not root.left and not root.right:
            if depth > self.max_depth:
                self.result = root.val
                self.max_depth = depth
            return

        if root.left:
            depth += 1
            self.dfs(root.left, depth)
            depth -= 1

        if root.right:
            depth += 1
            self.dfs(root.right, depth)
            depth -= 1

        
    

112. 路径总和

给你二叉树的根节点 root 和一个表示目标和的整数 targetSum 。判断该树中是否存在 根节点到叶子节点 的路径,这条路径上所有节点值相加等于目标和 targetSum 。如果存在,返回 true ;否则,返回 false 。

叶子节点 是指没有子节点的节点。

这个你完全可以按照遍历所有路径的思路去写,然后只要有一个路径满足就可以了。

但是这样会多跑,就算你前面判断有某条路径可以了,但是你还是会继续走。麻烦

所以可以优化。我的思路是设置一个全局的变量,当第一次满足的时候去改变它,后面就判断是否改变,如果改变了,就不遍历,没有,就继续遍历

def hasPathSum(self, root, targetSum):
    if not root:
        return False
    self.targetSum = targetSum
    self.flag = False
    self.dfs(root, path=[])
    return self.flag
    


def dfs(self, root, path):
    path.append(root.val)
    
    if not root.left and not root.right:
        sum_ = sum(path)
        if sum_ == self.targetSum:
            self.flag = True
        return
    
    if root.left:
        if !self.flag:
            self.dfs(root.left, path)
        path.pop()

    if root.right:
        if !self.flag:
            self.dfs(root.right, path)
        path.pop()

        
    

这个题目还是可以继续改善

你可以不采用列表求和,而是在递归过程中直接相减。

此外,你可以让输出返回值,当遇到符合条件的子路径就返回

class Solution:
    def hasPathSum(self, root: Optional[TreeNode], targetSum: int) -> bool:
        if not root:
            return False
        return self.tranversal(root, targetSum-root.val)

    def tranversal(self, node, count):

        if node.left == None and node.right == None and count == 0:
            return True
        if node.left == None and node.right == None:
            return False
                
        if node.left:
            count -= node.left.val
            if self.tranversal(node.left, count):
                return True
            count += node.left.val
        if node.right:
            count -= node.right.val
            if self.tranversal(node.right, count):
                return True
            count += node.right.val
        
        return False

113. 路径总和2

给定一个二叉树和一个目标和,找到所有从根节点到叶子节点路径总和等于给定目标和的路径。

说明: 叶子节点是指没有子节点的节点。

示例: 给定如下二叉树,以及目标和 sum = 22,其实也和遍历所有路径一个思路 只不过判断条件不一样。

106.从中序与后序遍历序列构造二叉树

中序 左中右

后序 左右中

思路就是用后序得到根节点

然后用得到的根节点去中序分割左右子树

然后再用中序的左右子树去区分后序的左右子树

这样就得到了 root的左子树和右子树 在进行递归 直到最后的叶节点。

核心在于分割区间,然后边界条件的确定。统一边界条件,左闭右开。

class Solution:
    def buildTree(self, inorder: List[int], postorder: List[int]) -> Optional[TreeNode]:
        if not postorder:
            return None

        # 第二步: 后序遍历的最后一个就是当前的中间节点.
        root_val = postorder[-1]
        root = TreeNode(root_val)

        # 第三步: 找切割点.
        separator_idx = inorder.index(root_val)

        # 第四步: 切割inorder数组. 得到inorder数组的左,右半边.
        inorder_left = inorder[:separator_idx]
        inorder_right = inorder[separator_idx + 1:]

        # 第五步: 切割postorder数组. 得到postorder数组的左,右半边.
        # ⭐️ 重点1: 中序数组大小一定跟后序数组大小是相同的.
        postorder_left = postorder[:len(inorder_left)]
        postorder_right = postorder[len(inorder_left): len(postorder) - 1]

        # 第六步: 递归
        root.left = self.buildTree(inorder_left, postorder_left)
        root.right = self.buildTree(inorder_right, postorder_right)
         # 第七步: 返回答案
        return root

前序遍历也是一样,只不过要注意区间分割,代码如下。

# Definition for a binary tree node.
# class TreeNode:
#     def __init__(self, val=0, left=None, right=None):
#         self.val = val
#         self.left = left
#         self.right = right
class Solution:
    def buildTree(self, preorder: List[int], inorder: List[int]) -> Optional[TreeNode]:
        if not preorder: return None
        
        root_val = preorder[0]
        root = TreeNode(root_val)

        index = inorder.index(root_val)

        # 切割中序
        inorder_left = inorder[: index]
        inorder_right = inorder[index+1:]

        # 切割前序
        preorder_left = preorder[1: 1+len(inorder_left)]
        preorder_right = preorder[1+len(inorder_left):]
        
        root.left = self.buildTree(preorder_left, inorder_left)
        root.right = self.buildTree(preorder_right, inorder_right)

        return root

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值