朴素贝叶斯分类算法是一种基于概率统计的分类方法,它假设特征之间是相互独立的,并且通过计算后验概率来进行分类。本文将详细介绍朴素贝叶斯分类算法的原理,并提供相应的源代码实现。
算法原理:
朴素贝叶斯分类算法基于贝叶斯定理,其核心思想是通过已知的特征对待分类样本进行分类。算法假设特征之间相互独立,即一个特征的出现并不会影响其他特征的出现概率,这是算法“朴素”的原因。
设待分类样本为x=(x1,x2,…,xn),其中x1,x2,…,xn为n个特征,分类标记为y。朴素贝叶斯算法的目标是计算后验概率P(y|x),即在给定特征x的条件下,样本属于类别y的概率。
根据贝叶斯定理,后验概率可以表示为:
P(y|x) = (P(x|y) * P(y)) / P(x)
其中,P(x|y)为似然度,表示在类别y下特征x出现的概率;P(y)为先验概率,表示类别y出现的概率;P(x)为证据因子,表示特征x出现的概率。
朴素贝叶斯算法的关键是估计先验概率P(y)和似然度P(x|y)。对于离散特征,可以通过计算频率来估计概率;对于连续特征,一种常用的方法是假设特征符合正态分布,通过计算均值和方差来估计概率。
源代码实现:
下面是一个简单的朴素贝叶斯分类算法的 Python 实现示例: