NLP与LLM:深入对比

72 篇文章 ¥59.90 ¥99.00
本文探讨了自然语言处理(NLP)和大型语言模型(LLM)的区别,NLP关注理解和生成人类语言,涉及语言学、计算机科学和人工智能;而LLM侧重于通过深度学习训练大规模语言模型,生成连贯文本。NLP应用包括机器翻译、问答系统,LLM则用于文本生成。示例代码展示了NLP在文本分类中的应用。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

自然语言处理(Natural Language Processing,NLP)和大型语言模型(Large Language Model,LLM)是在人工智能领域中具有重要意义的概念。虽然两者有一些相似之处,但它们在目标、方法和应用方面存在一些关键差异。本文将深入探讨NLP和LLM之间的对比,并提供相应的源代码示例。

  1. 目标:

    • NLP的目标是通过计算机技术使计算机能够理解、解释和生成人类语言。它涉及语言学、计算机科学和人工智能的交叉领域,旨在构建智能化的自然语言处理系统。
    • LLM的目标是训练大规模的语言模型,使其能够生成与人类语言相似的文本。LLM通过大规模的训练数据和深度学习技术,学习语言的模式和结构,并能够生成连贯、有意义的文本。
  2. 方法:

    • NLP使用各种技术和算法来处理和理解文本,包括词法分析、句法分析、语义分析、情感分析等。常见的NLP方法包括基于规则的方法、统计方法和机器学习方法。
    • LLM使用深度学习技术,特别是循环神经网络(Recurrent Neural Networks,RNN)和变种(如长短时记忆网络(Long Short-Term Memory,LSTM)和门控循环单元(Gated Recurrent Unit,GRU)等),来训练大规模的语言模型。LLM通过学习大量文本数据的统计规律和语义结构来生成文本。
  3. 应用:

    • NLP在许多领域都有广泛的应用,包括机器翻译、自动问答系统、信息抽取、文本分类、情感分析等。NLP技术被广泛应用于搜索引擎、智能助手、
DVWA(Damn Vulnerable Web Application)是一个用于学习练习网络安全的靶场平台,下面是DVWA的搭建过程: 1. 安装环境: - 首先,你需要将 DVWA 下载到你的 Web 服务器上。你可以在 GitHub 上找到 DVWA 的源码。 - 将下载好的源码放置在你的 Web 服务器根目录下。 2. 配置数据库: - 打开 DVWA 文件夹中的 `config` 子文件夹,将 `config.inc.php.dist` 文件重命名为 `config.inc.php`。 - 编辑 `config.inc.php` 文件,配置数据库连接信息。输入你的 MySQL 数据库主机名、用户名、密码数据库名称,保存文件。 3. 初始化数据库: - 在浏览器中访问 DVWA 的 URL,如 `http://your-ip-address/dvwa`。 - 首次访问时,DVWA 会自动检测你的环境并引导你初始化数据库。点击 "Create / Reset Database" 按钮进行初始化。 4. 设置安全性级别: - 初始化数据库后,DVWA 会跳转到登录页面。使用默认的管理员用户名密码(admin/password)登录。 - 在 "DVWA Security" 标签页中,选择安全性级别。初始情况下,选择 `low` 级别以方便学习实践。 5. 开始使用 DVWA: - 确认安全性级别后,在 DVWA 主界面上你将看到各种漏洞挑战,比如 SQL 注入、跨站点脚本(XSS)、文件包含等。 - 选择你感兴趣的漏洞或挑战,按照提示进行测试实践。 请注意,在搭建 DVWA 靶场之前,确保你已经具备了运行 Web 服务器 MySQL 数据库的环境,并且已经正确配置了相关的服务。此外,为了安全起见,建议在局域网或虚拟机环境中使用 DVWA 进行学习实践。 希望以上信息能对你有所帮助!如果有任何其他问题,请随时提问。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值