Win10搭建GPU版Keras

欢迎转载,转载请注明出处。

放在最前边:真正搭建环境,还是需要看官方手册,虽然是英文的,但是确实比查一堆中文博客省时间,这个博客全当是学习笔记。

Part 1:参考文献

[1]Keras原版官方手册   https://keras.io/getting-started/faq/

[2]TensorFlow官方安装手册   https://www.tensorflow.org/install/

[3]Keras中文手册   http://keras-cn.readthedocs.io/en/latest/

[4]http://www.jianshu.com/p/c245d46d43f0

[5]http://blog.csdn.net/errors_in_life/article/details/65936133

[6]http://blog.csdn.net/yfszzx/article/details/50083281

[7]http://blog.csdn.net/u013709270/article/details/73385586?locationNum=1&fps=1

[8]http://blog.csdn.net/u012318074/article/details/77075209

[9]http://blog.csdn.net/cheese_pop/article/details/78201359


Part 2:计算机配置

系统:Windows10 企业版 64位 x64

CPU:Intel E5-2620v4

内存:32G

GPU:NVIDIA GTX 1080


Part 3:软件

1.Visual Studio 2015

2.CUDA 8.0

        下载地址:https://developer.nvidia.com/cuda-downloads

        最新的CUDA9.0装后会出错,别轻易尝试,会很耗费时间   (╯‵□′)╯︵┻━┻

3.cuDNN 6.0

        下载地址:https://developer.nvidia.com/cudnn

        这里需要注册一个NVIDIA账号,之后选择自己windows版本的cuDNN即可。关于cuDNN的选择,TensorFlow的官方文档写的是选择cuDNN6.1版本,其他版本不支持。


        然而NVIDIA的官网根本没这个版本【手动滑稽】,后来没办法用的6.0版本成功了。


4.Anaconda

        下载地址:https://repo.continuum.io/archive/index.html

        版本选择:Anconda34.2.0

        Python环境建设推荐使用科学计算集成python发行版Anaconda,Anaconda是Python众多发行版中非常适用于科学计算的版本,里面已经集成了很多优秀的科学计算Python库。

        但是据TensenFlow的官方手册上说,Anaconda是社区支持,并不是官方支持,所以建议使用【”native” pip】,但是因为比较懒,所以直接用Anaconda也没啥问题。

        版本选择,一定不要选择Python2.7,虽然很经典,但是不支持最新的TensorFlow。

        同样的也不要选择最新的Python3.6版本,本身兼容性就有问题,还得设置回3.5版本。很难受。下边是官网,但是这俩其实都用不了...


5.TensorFlow和Keras直接在Python环境里装就行,不用单独下。

6.如果后续需要用到图形,尽量把这个DirectX也装上。


Part 4:安装DirectX

        这个我是参照别人的博客写的,前文已标注引用。

        微软的DirectX SDK工具包,不安装它的话,后面编译CUDA_Samples是没法成功的。

        下载地址:https://pan.baidu.com/share/link?shareid=197164616&uk=369246564&fid=2918892502

        直接按照提示下一步就好了。我在windows 10上安装的时候,最后的时候会报错,不过没有关系,关掉那个框。

        搜索下"d3dx9.h"、"d3dx10.h"、"d3dx11.h"头文件是不是存在,如果路径如下这个样子,就成功了。

Part 5:GPU软件安装

1.VS2015安装

2.CUDA8.0安装

        CUDA8.0安装时不要选简装,一定要把所有的东西都装全,并且放在三个文件夹中,方便后续开发。

        之后在【计算机】-【属性】-【高级系统设置】-【高级】-【环境变量】-【系统变量】-【Path】中添加两条路径。

        一般情况下,安装好之后就会自动添加的,但是不知道为什么我得手动一下……


3.cuDNN

        cuDNN其实就是一个支持的库,有人说需要单独设置路径,后来一想,直接把相关的lib、dll文件直接塞进CUDA里就可以避免所有的问题,甚至不需要单独配置路径。

        cuDNN里有一个【bin】文件夹,将cudnn64_5.dll放进CUDA的【bin】文件夹,路径如下:F:\CUDA8\Development\bin

        同理,【include】里的.h头文件放进    F:\CUDA8\Development\include

        【lib】文件放入    F:\CUDA8\Development\lib\x64

        一定注意区分x86和x64。

4.测试

        ①在VS2015中新建一个空项目,之后新建一个【NVIDIA】,用.cu结尾。

        ②属性界面选择【Release】不要Debug。

        ③平台选择【x64】平台,不要win32平台。

        ④配置属性:

                【VC++目录】-【包含目录】:F:\CUDA8\Development\include

                【VC++目录】-【库目录】:F:\CUDA8\Development\lib\x64

                【CUDA C/C++】-【Device】-【Code Generation】-修改成【sm_30】

                【链接器】-【输入】-【附加依赖项】-添加cudnn.lib和cudart.lib

        ⑤右键项目-【生成依赖项】-【生成自定义】-选择CUDA8.0生成

        ⑥右键.cu文件-【属性】-【常规】-【项类型】-【CUDA C/C++】

        ⑦测试代码:

#include <iostream>
#include <cuda_runtime.h> 
#include <cudnn.h> 
using namespace std;  
void main()
{
	cudnnHandle_t handle;
	cudnnStatus_t t = cudnnCreate(&handle);
	cout<< cudnnGetErrorString(t);
	getchar();
}

        运行结果:


        如果顺利运行说明CUDA和cuDNN都成功安装了。

Part 6:Python部分

1.安装Anaconda

        我没有按照默认目录安装,直接装在了F盘里。需要注意的是最新的3.6版本按照默认模式安装,需要自己安装路径,让它自己安装路径,它就提示不推荐,容易出错….

        我使用的这个版本就直接下一步下一步就OK了。


        安装成功后,在左下角的菜单栏里,找到Anaconda3,打开路径的文件夹,找到【Anaconda Prompt】和【Anaconda Navigator】,将两个快捷方式放在桌面上。

        注意:如果使用pip系列出错

        TypeError:parse()got an unexpected keyword argument 'transport_encoding'

        解决方案:

        需要在主界面中输入命令:conda install –canaconda html5lib

        静等安装好其他插件即可使用pip。

2.TensorFlow安装

       打开【Anaconda Prompt】,输入:pip install--upgrade tensorflow-gpu 

        它会自动安装TensorFlow。

        刚装的时候下载速度特别的慢,后来装上神奇的VPN,嗯,确实有提升,我的下载速度约400kb/s,可以达到我的要求,所以就没在修改pip的默认源了。

        还有一种方法修改默认源,将源改为国内的阿里的源,可以大幅度提升下载速度。

        如果下载还是失败,参考另外一个博主写的博客,粘贴在这里(已在最前边写好了引用)。

        注意:如果出现了这样的问题。

        “Cannot removeentries from nonexistent file c:\programfiles\anaconda3\lib\site-packages\easy-install.pth”

        是因为setuptool的版本过低,TensorFlow要求29.0.1.

        解决方案:

        在主界面中输入:pipinstall --upgrade --ignore-installed setuptools

        静等升级即可解决。

3.Keras安装

        打开【Anaconda Prompt】,输入:pip install keras

        系统会自动收集信息,安装Keras。

4.进入Python

        在主界面中输入:Python  之后输入

>>> conda install git

>>> git clone https://github.com/fchollet/keras.git

>>> cd keras/examples/

>>> python mnist_mlp.py

        误输入用exit()可以退出。

5.测试

        ①在Python界面中输入:

import tensorflow as tf 
sess = tf.Session() 
a = tf.constant(10) 
b = tf.constant(22) 
print(sess.run(a + b))

        如果结果是32说明TensorFlow完全成功。

        ②在Python界面中输入:

import keras

        如果不报错说明安装成功












Keras:基于Theano和TensorFlow的深度学习库 这就是Keras Keras是一个高层神经网络库,Keras由纯Python编写而成并基Tensorflow或Theano。Keras支持快 速实验而生,能够把你的idea迅速转换为结果,如果你有如下需求,请选择Keras: 简易和快速的原型设计(keras具有高度模块化,极简,和可扩充特性) 支持CNN和RNN,或二者的结合 支持任意的链接方案(包括多输入和多输出训练) 无缝CPU和GPU切换 Keras适用的Python本是:Python 2.7-3.5 Keras的设计原则是 模块性:模型可理解为一个独立的序列或图,完全可配置的模块以最少的代价自由组合在一起。具 体而言,网络层、损失函数、优化器、初始化策略、激活函数、正则化方法都是独立的模块,你可 以使用它们来构建自己的模型。 极简主义:每个模块都应该尽量的简洁。每一段代码都应该在初次阅读时都显得直观易懂。没有黑 魔法,因为它将给迭代和创新带来麻烦。 易扩展性:添加新模块超级简单的容易,只需要仿照现有的模块编写新的类或函数即可。创建新模 块的便利性使得Keras更适合于先进的研究工作。 与Python协作:Keras没有单独的模型配置文件类型(作为对比,caffe有),模型由python代码描 述,使其更紧凑和更易debug,并提供了扩展的便利性。 Keras从2015年3月开始启动,经过一年多的开发,目前Keras进入了1.0的时代。Keras 1.0依然遵循相 同的设计原则,但与之前的本相比有很大的不同。如果你曾经使用过此前的其他Keras。你或许 会关心1.0的新特性。 泛型模型:简单和强大的新模块,用于支持复杂深度学习模型的搭建。 更优秀的性能:现在,Keras模型的编译时间得到缩短。所有的RNN现在都可以用两种方式实现, Keras中文文档 以供用户在不同配置任务和配置环境下取得最大性能。现在,基于Theano的RNN也可以被展开, 以获得大概25%的加速计算。 测量指标:现在,你可以提供一系列的测量指标来在Keras的任何监测点观察模型性能。 更优的用户体验:我们面向使用者重新编写了代码,使得函数API更简单易记,同时提供更有效的 出错信息。 新本的Keras提供了Lambda层,以实现一些简单的计算任务。 ... 如果你已经基于Keras0.3编写了自己的层,那么在升级后,你需要为自己的代码做以下调整,以 在Keras1.0上继续运行。请参考编写自己的层 关于Keras-cn 本文档是Keras文档的中文,包括keras.io的全部内容,以及更多的例子、解释和建议,目前,文档 的计划是: 1.x本:现有keras.io文档的中文翻译,保持与官方文档的同步 2.x本:完善所有【Tips】模块,澄清深度学习中的相关概念和Keras模块的使用方法 3.x本:增加Keras相关模块的实现原理和部分细节,帮助用户更准确的把握Keras,并添加更多 的示例代码 现在,keras-cn的本号将简单的跟随最新的keras release本 由于作者水平和研究方向所限,无法对所有模块都非常精通,因此文档中不可避免的会出现各种错误、 疏漏和不足之处。如果您在使用过程中有任何意见、建议和疑问,欢迎发送邮件 到moyan_work@foxmail.com与我取得联系。 您对文档的任何贡献,包括文档的翻译、查缺补漏、概念解释、发现和修改问题、贡献示例程序等,均 会被记录在致谢,十分感谢您对Keras中文文档的贡献! 同时,也欢迎您撰文向本文档投稿,您的稿件被录用后将以单独的页面显示在网站中,您有权在您的网 页下设置赞助二维码,以获取来自网友的小额赞助。 如果你发现本文档缺失了官方文档的部分内容,请积极联系我补充。 本文档相对于原文档有更多的使用指导和概念澄清,请在使用时关注文档中的Tips,特别的,本文档的 额外模块还有: 一些基本概念:位于快速开始模块的一些基本概念简单介绍了使用Keras前需要知道的一些小知 识,新手在使用前应该先阅读本部分的文档。 Keras安装和配置指南,提供了详细的Linux和Windows下Keras的安装和配置步骤。 深度学习与Keras:位于导航栏最下方的该模块翻译了来自Keras作者博客keras.io和其他Keras相关 博客的文章,该栏目的文章提供了对深度学习的理解和大量使用Keras的例子,您也可以向这个栏 目投稿。 所有的文章均在醒目位置标志标明来源与作者,本文档对该栏目文章的原文不具有任何处 置权。如您仍觉不妥,请联系本人(moyan_work@foxmail.com)删除。
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值