使用GPU 训练Tensorflow/Keras 的CNN模型

本文介绍了如何在配备NVIDIA MX510 GPU的联想潮7000笔记本上,利用CUDA和cuDNN加速Tensorflow-Keras的猫狗识别CNN模型训练。通过安装CUDA9.0、cuDNN,验证安装成功后,使用pip安装tensorflow-gpu和keras。经过测试,GPU训练比CPU快约5倍,模型精度达到80%左右。
摘要由CSDN通过智能技术生成

关键词:Kaggle 猫狗大赛,MX510 GPU, 联想潮7000, Win10, NVIDA显卡

之前写了一个猫狗识别的CNN模型,利用笔记本进行训练,每次都需要好久,基本每个epoch要5分钟左右,来来回回改改参数,每次都要等漫长的时间。于是在找怎么利用GPU进行训练。

1. 电脑的显卡是NVIDA MX510, 可以支持CUDA,要使用tensorflow-gpu版本,需要安装CUDA9.0,下载之后直接安装,可能有2个patch可以下载,但是patch 1装不上,patch 2 可以,不影响。


2. 下载cuDNN并安装,需要注册一下,下载后解压,将文件复制到CUDA的安装目录。

这是cuDNN解压后的文件

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

boldyoungster

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值