算法训练营打卡Day26

大家好啊,不知道大家国庆假期过得如何?

算法训练营休假5天期间大家有没有刷题?

有的话继续坚持,没有的话就当放松啦~

今天打卡二叉树的最后章节,同时不要忘记复习前面的章节,包括数组、字符串、链表、哈希表等内容!坚持就是胜利!

目录

1.修剪二叉搜索树

2.将有序数组转换为二叉搜索树

3.

题目1、669.​​​​​​修剪二叉搜索树

t力扣题目链接

给定一个二叉搜索树,同时给定最小边界L 和最大边界 R。通过修剪二叉搜索树,使得所有节点的值在[L, R]中 (R>=L) 。你可能需要改变树的根节点,所以结果应当返回修剪好的二叉搜索树的新的根节点。

669.修剪二叉搜索树

669.修剪二叉搜索树1

思路:


有一个误区,可能我们会认为只需要通过前序遍历确定根节点,然后删除掉比左(右)val值小(大)的节点然后返回root就可以了,但是这样往往会把左右孩子的在区间内的左右孩子也同时删除,这样的做法并不符合题意。我们可以通过递归的方法,在traversal()函数的返回值中递归使用traversal()函数,达成删除不符合的节点的同时保留符合的节点。

代码实现:

class Solution {  
public:  
    TreeNode* trimBST(TreeNode* root, int low, int high) {  
        if (root == nullptr) {  
            return nullptr;  
        }  
          
        if (root->val < low) {  
            // 如果当前节点的值小于 low,则修剪后的树是当前节点的右子树  
            return trimBST(root->right, low, high);  
        }  
          
        if (root->val > high) {  
            // 如果当前节点的值大于 high,则修剪后的树是当前节点的左子树  
            return trimBST(root->left, low, high);  
        }  
          
        // 如果当前节点的值在 [low, high] 范围内,则递归修剪左右子树  
        root->left = trimBST(root->left, low, high);  
        root->right = trimBST(root->right, low, high);  
        return root;  
    }  
};

题目2、108.将有序数组转换为二叉搜索树

力扣题目链接(opens new window)

将一个按照升序排列的有序数组,转换为一棵高度平衡二叉搜索树。

本题中,一个高度平衡二叉树是指一个二叉树每个节点 的左右两个子树的高度差的绝对值不超过 1。

示例:

108.将有序数组转换为二叉搜索树

关联题目

思路

首先我们要从数组的中间数字开始划分,划分成左右两个区间,然后在左右两个区间进行递归。

如何确定划分点呢?

为了确保不会发生越界,我们这样写 --> mid = left + (right - left) / 2

我们不需要再创建新的数组,在原来的数组的基础上改变下标,然后对左右区间进行遍历即可。

最后我们返回根节点。

代码实现

class Solution {
private:
    TreeNode* traversal(vector<int>& nums, int left, int right) {
        if (left > right) return nullptr;
        int mid = left + ((right - left) / 2);
        TreeNode* root = new TreeNode(nums[mid]);
        root->left = traversal(nums, left, mid - 1);
        root->right = traversal(nums, mid + 1, right);
        return root;
    }
public:
    TreeNode* sortedArrayToBST(vector<int>& nums) {
        TreeNode* root = traversal(nums, 0, nums.size() - 1);
        return root;
    }
};

 

题目3、538.把二叉搜索树转换为累加树

力扣题目链接(opens new window)

给出二叉 搜索 树的根节点,该树的节点值各不相同,请你将其转换为累加树(Greater Sum Tree),使每个节点 node 的新值等于原树中大于或等于 node.val 的值之和。

提醒一下,二叉搜索树满足下列约束条件:

节点的左子树仅包含键 小于 节点键的节点。 节点的右子树仅包含键 大于 节点键的节点。 左右子树也必须是二叉搜索树。

示例 1:

538.把二叉搜索树转换为累加树

  • 输入:[4,1,6,0,2,5,7,null,null,null,3,null,null,null,8]
  • 输出:[30,36,21,36,35,26,15,null,null,null,33,null,null,null,8]

示例 2:

  • 输入:root = [0,null,1]
  • 输出:[1,null,1]

示例 3:

  • 输入:root = [1,0,2]
  • 输出:[3,3,2]

示例 4:

  • 输入:root = [3,2,4,1]
  • 输出:[7,9,4,10]

思路

普大喜奔!二叉树章节已全部更完啦!| LeetCode:538.把二叉搜索树转换为累加树_哔哩哔哩_bilibili

代码实现

(思路相近,精简版运行效率更高)

版本1

class Solution {
private:
    int pre;
    void traversal(TreeNode* cur){
        if (cur == NULL) return;
        traversal(cur->right);  // 右
        cur->val += pre;        // 中
        pre = cur->val;
        traversal(cur->left);   // 左
    }

public:
    TreeNode* convertBST(TreeNode* root) {
        pre = 0;
        traversal(root);
        return root;
    }
};

版本2 

class Solution {
public:
    int sum = 0;
    TreeNode* convertBST(TreeNode* root) {
        if(root == nullptr)
        {
            return nullptr;
        }

        convertBST(root->right);
        sum += root->val;
        root->val = sum;
        convertBST(root->left);

        return root;
    }
};

总结:二叉树章节告一段落,但是还要掌握迭代法的相关知识和巩固二叉树递归法的操作!

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值