class Solution {
public:
int hammingDistance(int x, int y) {
/*
// caculate from first digit
int n = x ^ y, ns = 0;
while (n) {
++ ns;
n &= n - 1;
}
*/
// caculate from last digit
int n = x ^ y, ns = 0;
while (n){
ns += n & 1;
n = n >> 1;
}
return ns;
}
};
3ms/E
- C++ solution with little hit| O(n), bitwise
- Compared to calculate every pair of numbers, processing with every digit from all numbers is clever.
- Since Hamming distance will be added when two numbers are different, this problem turn to be “counting the number of cases that pari numbers are different in every digit.”
- So for binary numbers, what we should do is counting how many 1 existing in this digit, and
count(0) = nums.size() - count(1)
. - Then different pairs exists when two numbers are from different sets that
total += count(1) * count(0)
.
class Solution {
public:
int totalHammingDistance(vector<int>& nums) {
int ans = 0, ns, t = 0;
if (nums.size()<2) return 0;
while (t < nums.size()){
ns = 0;
t = 0;
for (int i =0; i < nums.size(); i++){
//caculate from the last digit
ns += nums[i]&1;
nums[i] = nums[i] >> 1;
if (nums[i]==0) t++;
}
ans += ns * (nums.size()-ns);
}
return ans;
}
};
59ms/M