给定 n 个非负整数,用来表示柱状图中各个柱子的高度。每个柱子彼此相邻,且宽度为 1 。
求在该柱状图中,能够勾勒出来的矩形的最大面积。
以上是柱状图的示例,其中每个柱子的宽度为 1,给定的高度为 [2,1,5,6,2,3]。
图中阴影部分为所能勾勒出的最大矩形面积,其面积为 10 个单位。
示例:
输入: [2,1,5,6,2,3]
输出: 10
这道题最好的做法是是使用单调栈,只要遍历一次就可求出最大面积。
一、如何求最大矩形面积
现在我们从头开始讲,如果要求只能遍历一次,那么如何求最大面积?
我想到一个思路,那就是先把能完全包含各个柱状图的矩形的最大面积求出来,然后求出其中最大值即可。以例题来说就是
-
能完全覆盖第0个柱子的最大矩形
-
能完全覆盖第1个柱子的最大矩形
-
能完全覆盖第2个柱子的最大矩形
-
能完全覆盖第3个柱子的最大矩形
-
能完全覆盖第4个柱子的最大矩形
-
能完全覆盖第5个柱子的最大矩形
如此这般,就能够覆盖所有分支而又不遗漏,将这6个矩形的面积比较下就知道最大面积了。
二、如何求以某个柱子为高的最大矩形
我们就以例题中第4个,高为2的柱子举例好了。
矩形的面积=高*宽。