Tensor,又名张量,从工程角度来讲,可简单地认为它就是一个数组,且支持高效的科学计算。它可以是一个数(标量)、一维数组(向量)、二维数组(矩阵)和更高维的数组(高阶数据)。Tensor和Numpy的ndarrays类似,但PyTorch的tensor支持GPU加速。
创建Tensor
函数 | 功能 |
---|---|
Tensor(*sizes) | 基础构造函数 |
tensor(data,) | 类似np.array的构造函数 |
ones(*sizes) | 全1Tensor |
zeros(*sizes) | 全0Tensor |
eye(*sizes) | 对角线为1,其他为0 |
arange(s,e,step) | 从s到e,步长为step |
linspace(s,e,steps) | 从s到e,均匀切分成steps份 |
rand/randn(*sizes) | 均匀/标准分布 |
normal(mean,std)/uniform(from,to) | 正态分布/均匀分布 |
randperm(m) | 随机排列 |
创建的时候可以指定数据类型dtype和存放device(cpu/gpu),特别注意的是t.Tensor(*sizes)创建tensor时,系统不会马上分配空间,只是会计算剩余的内存是否足够使用,使用到tensor时才会分配,而其它操作都是在创建完tensor之后马上进行空间分配。
示例代码:
from __future__ import print_function
import torch as t
a = t.Tensor(2, 3)# 指定tensor的形状
print(a)# 数值取决于内存空间的状态,print时候可能overflow
b = t.Tensor([[1,2,3],[4,5,6]])# 用list的数据创建tensor
print(b)
print(b.tolist())# 把tensor转为list
print(b.numel()) # b中元素总个数,2*3,等价于b.nelement()
print(b.nelement())
# 创建一个和b形状一样的tensor
c = t.Tensor(b.size())
# 创建一个元素为2和3的tensor
d = t.Tensor((2, 3))
#查看tensor的形状,tensor.shape等价于tensor.size()
print(c.shape)
t.ones(2, 3)
t.zeros(2, 3)
t.arange(1, 6, 2)
t.linspace(1, 10, 3)
t.randn(2, 3, device=t.device('cpu'))
t.randperm(5) # 长度为5的随机排列
t.eye(2, 3, dtype=t.int) # 对角线为1, 不要求行列数一致
scalar = t.tensor(3.14159)
print('scalar: %s, shape of sclar: %s' %(scalar, scalar.shape))
vector = t.tensor([1, 2])
print('vector: %s, shape of vector: %s' %(vector, vector.shape))
matrix = t.tensor([[0.1, 1.2], [2.2, 3.1], [4.9, 5.2]])
t.tensor([[0.11111, 0.222222, 0.3333333]],
dtype=t.float64,
device=t.device('cpu'))
empty_tensor = t.tensor([])
常用Tensor操作
通过tensor.view方法可以调整tensor的形状,但必须保证调整前后元素总数一致。view不会修改自身的数据,返回的新tensor与原tensor共享内存,即更改其中的一个,另外一个也会跟着改变。在实际应用中可能经常需要添加或减少某一维度,这时候squeeze和unsqueeze两个函数就派上用场了。
示例代码:
from __future__ import print_function
import torch as t
a = t.arange(0, 6)
print(a.view(2, 3))
b = a.view(-1, 3) # 当某一维为-1的时候,会自动计算它的大小
b.unsqueeze(1) # 注意形状,在第1维(下标从0开始)上增加“1”
#等价于 b[:,None]
print(b[:,None])
print(b.unsqueeze(1).shape)
b.unsqueeze(-2) # -2表示倒数第二个维度
c = b.view(1, 1, 1, 2, 3)
c.squeeze(0) # 压缩第0维的“1”
c.squeeze() # 把所有维度为“1”的压缩
a[1] = 100# a修改,b作为view之后的,也会跟着修改
resize是另一种可用来调整size的方法,但与view不同,它可以修改tensor的大小。如果新大小超过了原大小,会自动分配新的内存空间,而如果新大小小于原大小,则之前的数据依旧会被保存。
示例代码:
print(b)
b.resize_(1, 3)#新大小小于原大小,
print(b)
b.resize_(3, 3) # 旧的数据依旧保存着,多出的大小会分配新空间
print(b)
结果:
tensor([[ 0, 100, 2],
[ 3, 4, 5]])
tensor([[ 0, 100, 2]])
tensor([[ 0, 100, 2],
[ 3, 4, 5],
[32088598324117601, 31244151918821473, 34058953221341293]])
索引操作
示例代码:
from __future__ import print_function
import torch as t
a = t.randn(3, 4)
"""
tensor([[ 1.1741, 1.4335, -0.8156, 0.7622],
[-0.6334, -1.4628, -0.7428, 0.0410],
[-0.6551, 1.0258, 2.0572, 0.3923]])
"""
a[0] # 第0行(下标从0开始) tensor([ 1.1741, 1.4335, -0.8156, 0.7622])
a[:, 0] # 第0列 tensor([ 1.1741, -0.6334, -0.6551])
a[0][2] # 第0行第2个元素,等价于a[0, 2] tensor(-0.8156)
a[0, -1] # 第0行最后一个元素 tensor(0.7622)
a[:2] # 前两行 tensor([[ 1.1741, 1.4335, -0.8156, 0.7622],
# [-0.6334, -1.4628, -0.7428, 0.0410]])
a[:2, 0:2] # 前两行,第0,1列 tensor([[ 1.1741, 1.4335],
# [-0.6334, -1.4628]])
a[0:1, :2] # 第0行,前两列 tensor([[1.1741, 1.4335]])
a[0, :2]# 注意两者的区别:形状不同 tensor([1.1741, 1.4335])
# None类似于np.newaxis, 为a新增了一个轴
# 等价于a.view(1, a.shape[0], a.shape[1])
a[None].shape #torch.Size([1, 3, 4]) 等价于a[None,:,:]
a[:,None,:].shape # torch.Size([3, 1, 4])
a[:,None,:,None,None].shape #torch.Size([3, 1, 4, 1, 1])
a > 1 # 返回一个ByteTensor
"""
tensor([[1, 1, 0, 0],
[0, 0, 0, 0],
[0, 1, 1, 0]], dtype=torch.uint8)
"""
a[a>1] # 等价于a.masked_select(a>1)选择结果与原tensor不共享内存空间
# tensor([1.1741, 1.4335, 1.0258, 2.0572])
a[t.LongTensor([0,1])] # 第0行和第1行
"""
tensor([[ 1.1741, 1.4335, -0.8156, 0.7622],
[-0.6334, -1.4628, -0.7428, 0.0410]])
"""
其它常用的选择函数下表所示:
函数 | 功能 |
---|---|
index_select(input, dim, index) | 在指定维度dim上选取,比如选取某些行、某些列 |
masked_select(input, mask) | 例子如上,a[a>0],使用ByteTensor进行选取 |
non_zero(input) | 非0元素的下标 |
gather(input, dim, index) | 根据index,在dim维度上选取数据,输出的size与index一样 |
gather是一个比较复杂的操作,对一个2维tensor,输出的每个元素如下:
from __future__ import print_function
import torch as t
a = t.arange(0, 16).view(4, 4)
print(a)
"""
tensor([[ 0, 1, 2, 3],
[ 4, 5, 6, 7],
[ 8, 9, 10, 11],
[12, 13, 14, 15]])
"""
# 选取对角线的元素
index = t.LongTensor([[0,1,2,3]]) # tensor([[0, 1, 2, 3]])
a.gather(0, index) #tensor([[ 0, 5, 10, 15]])
# 选取反对角线上的元素,注意与上面的不同
index = t.LongTensor([[3,2,1,0]])
a.gather(0, index) #tensor([[12, 9, 6, 3]])
# 选取两个对角线上的元素
index = t.LongTensor([[0,1,2,3],[3,2,1,0]]).t()
b = a.gather(1, index)
"""
tensor([[ 0, 3],
[ 5, 6],
[10, 9],
[15, 12]])
"""
与gather相对应的逆操作是scatter_,gather把数据从input中按index取出,而scatter_是把取出的数据再放回去。注意scatter_函数是inplace操作。
# 把两个对角线元素放回去到指定位置
c = t.zeros(4,4)
c.scatter_(1, index, b.float())
"""
tensor([[ 0., 0., 0., 3.],
[ 0., 5., 6., 0.],
[ 0., 9., 10., 0.],
[12., 0., 0., 15.]])
"""
对tensor的任何索引操作仍是一个tensor,想要获取标准的python对象数值,需要调用tensor.item(), 这个方法只对包含一个元素的tensor适用。
a[0,0] #依旧是tensor tensor(0)
a[0,0].item() # python float 0
d = a[0:1, 0:1, None]
print(d.shape) #torch.Size([1, 1, 1])
print(d) #tensor([[[0]]])
d.item() # 只包含一个元素的tensor即可调用tensor.item,与形状无关 0
高级索引
高级索引可以看成是普通索引操作的扩展,但是高级索引操作的结果一般不和原始的Tensor共享内存。
x = t.arange(0,27).view(3,3,3)
"""
tensor([[[ 0, 1, 2],
[ 3, 4, 5],
[ 6, 7, 8]],
[[ 9, 10, 11],
[12, 13, 14],
[15, 16, 17]],
[[18, 19, 20],
[21, 22, 23],
[24, 25, 26]]])
"""
x[[1, 2], [1, 2], [2, 0]]# x[1,1,2]和x[2,2,0]) tensor([14, 24])
x[[2, 1, 0], [0], [1]] # x[2,0,1],x[1,0,1],x[0,0,1] tensor([19, 10, 1])
x[[0, 2], ...] # x[0] 和 x[2]
"""
tensor([[[ 0, 1, 2],
[ 3, 4, 5],
[ 6, 7, 8]],
[[18, 19, 20],
[21, 22, 23],
[24, 25, 26]]])
"""