循环神经网络:GRU

GRU

GRU是由Cho在2014年提出的,全称是Gated Recurrent Unit。它与LSTM最大的不同在于GRU将遗忘门和输入门合成了一个“更新门”,同时网络不再额外给出记忆状态 C t C_t Ct,而是将输出结果 h t h_t ht作为记忆状态不断向后循环传递,网络的输入和输出都变得特别简单。具体的计算过程如下图所示:在这里插入图片描述在本质上,GRU和LSTM是相同的,将上一时刻 t − 1 t-1 t1输出 h t − 1 h_{t-1} ht1和当前 t t t时刻的输入 x t x_t xt结合起来计算各种衰减系数,略微不同的地方是,线性变换没有使用偏置,由于记忆状态也是 h t − 1 h_{t-1} ht1,所以直接对它进行更新就可以了,最后输出网络的结果 h t h_t ht,这个结果也是网络的记忆状态。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值