自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+
  • 博客(145)
  • 资源 (1)
  • 收藏
  • 关注

原创 Java学习(三)Java运算符(2)算术运算符

Java学习(三)Java运算符(2)算术运算符

2022-09-16 20:35:26 133

原创 Java学习(三)Java运算符(1)运算符概述

Java运算符概述

2022-09-16 20:05:06 34

翻译 【论文阅读】A Hybrid Model Integrating Local and Global...Traffic Prediction[一种融合局部和全局空间相关性的交通预测混合模型](5)

【论文阅读】A Hybrid Model Integrating Local and Global Spatial Correlation for Traffic Prediction[一种融合局部和全局空间相关性的交通预测混合模型](5)5. Discussion(讨论)6. Concluaion(结论)

2022-09-15 15:35:18 184

翻译 【论文阅读】A Hybrid Model Integrating Local and Global...Traffic Prediction[一种融合局部和全局空间相关性的交通预测混合模型](4)

论文阅读】A Hybrid Model Integrating Local and Global Spatial Correlation for Traffic Prediction[一种融合局部和全局空间相关性的交通预测混合模型](4)4. Experiments(实验)

2022-09-15 14:55:21 188

翻译 【论文阅读】A Hybrid Model Integrating Local and Global...Traffic Prediction[一种融合局部和全局空间相关性的交通预测混合模型](3)

【论文阅读】A Hybrid Model Integrating Local and Global Spatial Correlation for Traffic Prediction[一种融合局部和全局空间相关性的交通预测混合模型](3)3. Methodology(方法)

2022-09-14 21:01:16 216

翻译 【论文阅读】A Hybrid Model Integrating Local and Global...Traffic Prediction[一种融合局部和全局空间相关性的交通预测混合模型](2)

【论文阅读】A Hybrid Model Integrating Local and Global Spatial Correlation for Traffic Prediction[一种融合局部和全局空间相关性的交通预测混合模型](2)2. Related Work(相关工作)Abstract

2022-09-14 12:22:06 9

翻译 【论文阅读】A Hybrid Model Integrating Local and Global...Traffic Prediction[一种融合局部和全局空间相关性的交通预测混合模型](1)

【论文阅读】A Hybrid Model Integrating Local and Global Spatial Correlation for Traffic Prediction[一种融合局部和全局空间相关性的交通预测混合模型](1)Abstract1. Introduction

2022-09-13 23:43:37 12

翻译 【论文阅读】Attention Based Spatial-Temporal GCN...Traffic Flow Forecasting[基于注意力的时空图卷积网络交通流预测](4)

【论文阅读】Attention Based Spatial-Temporal Graph Convolutional Networks for Traffic Flow Forecasting[基于注意力的时空图卷积网络交通流预测](4) 5. Experiments(实验)6. Conclusion and Future Work(结论与未来工作)

2022-09-13 13:36:49 223

翻译 【论文阅读】Attention Based Spatial-Temporal GCN...Traffic Flow Forecasting[基于注意力的时空图卷积网络交通流预测](3)

【论文阅读】Attention Based Spatial-Temporal GCN...Traffic Flow Forecasting[基于注意力的时空图卷积网络交通流预测](3)Attention Based Spatial-Temporal Graph Convolutional Networks(基于注意力的时空图卷积网络)

2022-09-13 12:38:44 19

原创 Java学习(二)Java常量与变量(5)整型字面值及变量声明

整型字面值及变量声明

2022-08-29 16:48:13 41

原创 Java学习(二)Java常量与变量(4)数据类型

Java数据类型

2022-08-29 16:45:07 82

原创 Java学习(二)Java常量与变量(3)变量

Java变量概述

2022-08-29 15:37:39 31

原创 Java学习(二)Java常量与变量(2)关键字

Java关键字概述

2022-08-29 15:21:18 16

原创 Java学习(二)Java常量与变量(1)标识符

Java标识符的命名规则概述

2022-08-29 12:30:40 37

原创 Java工具——Eclipse导入源码

Java工具——Eclipse导入源码

2022-08-29 12:27:29 18

翻译 【论文阅读】Attention Based Spatial-Temporal GCN...Traffic Flow Forecasting[基于注意力的时空图卷积网络交通流预测](2)

【论文阅读】Attention Based Spatial-Temporal Graph Convolutional Networks for Traffic Flow Forecasting[基于注意力的时空图卷积网络交通流预测](2)3.Preliminaries(准备工作)原文地址:https://ojs.aaai.org/index.php/AAAI/article/view/3881原文代码地址:https://github.com/ wanhuaiyu/ASTGCN3.Prelimina

2022-08-14 12:35:23 30

原创 Java工具——Eclipse显示左侧目录栏

Eclipse显示左侧目录栏

2022-08-11 16:16:37 247

原创 Java工具——Eclipse设置字体大小

Eclipse设置字体大小

2022-08-11 16:08:50 186

原创 Java学习(一)Java初识(2)Java的程序结构

本节通过一个简单的例子来理解Java的程序结构。

2022-08-11 15:27:53 36

原创 Java学习(一)Java初识(1)一个简单的Java程序

今天开始学习Java,这是一门我没有学习过的语言,我打算对待学习并将学习过程记录下来。这是第一大部分——Java初识,第一节,在电脑上运行一个简单的Java小程序。

2022-08-11 11:18:22 70

原创 形象理解傅里叶变换

形象展示傅里叶变换以及其数学描述

2022-07-22 17:29:58 121

翻译 【论文阅读】Attention Based Spatial-Temporal GCN...Traffic Flow Forecasting[基于注意力的时空图卷积网络交通流预测](1)

【论文阅读】Attention Based Spatial-Temporal Graph Convolutional Networks for Traffic Flow Forecasting[基于注意力的时空图卷积网络交通流预测](1)1.Introduction(介绍)2.Related work(相关工作)参考文献Attention Based Spatial-Temporal Graph Convolutional Networks for Traffic Flow Forecasting基于注

2022-05-20 14:11:29 444

翻译 【论文阅读】Spatio-Temporal Graph Convolutional Networks:...Traffic Forecasting[时空图卷积网络:用于交通预测的深度学习框架](5)

【论文阅读】Spatio-Temporal Graph Convolutional Networks: A Deep Learning Framework for Traffic Forecasting[时空图卷积网络: 用于交通预测的深度学习框架](5)5. Related Works(相关工作)6. Conclusion and Future Work(结论与未来的工作)参考文献原文地址:https://transport.ckcest.cn/Search/get/298151?db=cats_hui

2022-05-11 12:55:36 94

翻译 【论文阅读】Spatio-Temporal Graph Convolutional Networks:...Traffic Forecasting[时空图卷积网络:用于交通预测的深度学习框架](4)

【论文阅读】Spatio-Temporal Graph Convolutional Networks: A Deep Learning Framework for Traffic Forecasting[时空图卷积网络: 用于交通预测的深度学习框架](4)4. Experiments(实验)4.1 Dataset Description(数据集描述)4.2 Data Preprocessing(数据预处理)4.3 Experimental Settings(实验设置)4.4 Experiment Resul

2022-05-11 12:45:14 424

翻译 【论文阅读】Spatio-Temporal Graph Convolutional Networks:...Traffic Forecasting[时空图卷积网络:用于交通预测的深度学习框架](3)

【论文阅读】Spatio-Temporal Graph Convolutional Networks: A Deep Learning Framework for Traffic Forecasting[时空图卷积网络: 用于交通预测的深度学习框架](3)3. Proposed Model(模型)3.1 Network Architecture(网络结构)3.2 Graph CNNs for Extracting Spatial Features(用于提取空间特征的图CNN)3.3 Gated CNNs f

2022-05-10 23:19:42 90

翻译 【论文阅读】Spatio-Temporal Graph Convolutional Networks:...Traffic Forecasting[时空图卷积网络:用于交通预测的深度学习框架](2)

【论文阅读】Spatio-Temporal Graph Convolutional Networks: A Deep Learning Framework for Traffic Forecasting[时空图卷积网络: 用于交通预测的深度学习框架](2)2. Preliminary(初步工作)2.1 Traffic Prediction on Road Graphs(道路图的交通预测)2. Preliminary(初步工作)2.1 Traffic Prediction on Road Graphs(道

2022-05-10 14:40:57 88

翻译 【论文阅读】Spatio-Temporal Graph Convolutional Networks:...Traffic Forecasting[时空图卷积网络:用于交通预测的深度学习框架](1)

【论文阅读】Spatio-Temporal Graph Convolutional Networks: A Deep Learning Framework for Traffic Forecasting[时空图卷积网络:用于交通预测的深度学习框架](1)0. Abstract1. Introduction(介绍)Spatio-Temporal Graph Convolutional Networks: A Deep Learning Framework for Traffic Forecasting时空

2022-05-09 16:09:41 146

转载 图神经网络(六)GNN的应用简介(3)GNN的未来展望

图神经网络(六)GNN的应用简介(3)GNN的未来展望6.3 GNN的未来展望1.充分适应复杂多变的图数据2.在更多推理任务上的应用于学习机制的研究改进3.对超大规模图建模的支持参考文献6.3 GNN的未来展望 作为一种新兴的神经网络技术,GNN\text{GNN}GNN 的快速发展离不开近些年深度学习在各方面的重要积淀。而与 GNN\text{GNN}GNN 的结合,可以助力深度学习系统拓展其在更广领域、更多层面的场景任务中获得成功。我们非常确信在未来几年,GNN\text{GNN}GNN 会在越来越

2022-05-09 12:09:22 56

转载 图神经网络(六)GNN的应用简介(2)3D视觉

图神经网络(六)GNN的应用简介(2)3D视觉6.2 GNN的应用案例6.2.1 3D视觉6.2.2 基于社交网络的推荐系统6.2.3 视觉推理6.2 GNN的应用案例 本节将从3D视觉、基于社交网络的推荐系统、视觉推理3个方面介绍GNN的应用案例,希望借由这3个应用场景能够为大家深入而具体地展示GNN的技术特点及优势。6.2.1 3D视觉 继卷积神经网络在2D视觉上获得前所未有的成功之后,近几年,如何让计算机理解3D世界,特别是如何延续深度学习技术在3D视觉问题上的表现受到了越来越多的研究人员的

2022-05-09 11:54:50 209

转载 图神经网络(六)GNN的应用简介(1)GNN的应用简述

图神经网络(六)GNN的应用简介(1)GNN的应用简述第6章 GNN的应用简介6.1 GNN的应用简述参考文献第6章 GNN的应用简介 由于图数据具有及其广泛的使用场景,GNN这项技术的相关应用近年来也得到了长足发展。本章就以GNN的应用来阐述其研究现状与未来趋势 [0] 。 6.1节对GNN的应用做出了一个概括性的简述;6.2节以3个具体的应用案例来说明GNN的相关优势;6.3节我们对GNN研究的未来展望进行讨论。6.1 GNN的应用简述 GNN的适用范围非常广泛,既可以处理具有显式关联结构的

2022-05-08 23:05:16 528

原创 图神经网络(五)基于GNN的图表示学习(4)基于图自编码器的推荐系统实战代码

图神经网络(五)基于GNN的图表示学习(4)基于图自编码器的推荐系统实战代码基于图自编码器的推荐系统实战代码代码说明autoencoder.pydataset.pymain.py运行结果基于图自编码器的推荐系统实战代码代码说明 本次实验是在 Pycharm 上完成,将以下Python文件代码导入即可,如下图所示,然后直接运行即可。autoencoder.pyimport torchimport torch.nn as nnimport torch.nn.functional as Fim

2022-05-08 22:33:47 583

转载 图神经网络(五)基于GNN的图表示学习(3)基于图自编码器的推荐系统

图神经网络(五)基于GNN的图表示学习(3)基于图自编码器的推荐系统5.3 基于图自编码器的推荐系统参考文献5.3 基于图自编码器的推荐系统 下面讲解一个基于图自编码器实现简单的推荐任务 [14] 的例子。推荐系统要建立的是用户与商品之间的关系,这里我们以简化后的用户对商品的评分为例进行介绍,如图5-5。假设用户与商品之间的交互行为只存在评分,分值从 111 分到 555 分。如果用户 uuu 对商品 vvv 进行评分,评分为 rrr ,就是说用户 uuu 与商品 vvv 之间存在一条边,边的类型为 r

2022-05-08 20:43:59 235

转载 图神经网络(五)基于GNN的图表示学习(2)基于GNN的图表示学习

图神经网络(五)基于GNN的图表示学习(2)基于GNN的图表示学习5.2 基于GNN的图表示学习5.2.1 基于重构损失的GNN1.推断模型2.生成模型3.损失函数5.2 基于GNN的图表示学习 凭借强大的端对端学习能力,GNN这类模型可以非常友好地支持有监督的学习方式。但是GNN本身作为一种重要的对图数据进行表示学习的框架,只要与相应的无监督损失函数结合起来就能实现无监督图表示学习。无监督学习的主体在于损失函数的设计,这里我们分两类损失函数分别进行介绍:基于重构损失的GNN和基于对比损失的GNN。

2022-05-08 12:31:02 131

转载 图神经网络(五)基于GNN的图表示学习(1)图表示学习

图神经网络(五)基于GNN的图表示学习(1)图表示学习第五章 基于GNN的图表示学习5.1 图表示学习参考文献第五章 基于GNN的图表示学习 图数据有着复杂的结构、多样化的属性类型,以及多层面的学习任务,要想充分利用图数据的优势,就需要一种高效的图数据表示方法。与表示学习在数据学习中的重要位置一样,图表示学习也成了图学习领域中十分热门的研究课题 [0] 。 作为近几年深度学习的新兴领域,GNN在多个图数据的相关任务上都取得了不俗的成绩,这也显示出了其强大的表示学习能力。毫无疑问,GNN的出现给图表示学

2022-05-07 16:56:21 276

原创 图神经网络(四)图分类(4)图分类实战完整代码

图神经网络(四)图分类(4)图分类实战完整代码完整代码代码说明SetUp功能函数定义D&D数据Model定义GraphConvolutionReadOut实现基于自注意力机制的池化层模型一:SAGPool Global Model模型二:SAGPool Hierarchical Model训练&测试运行结果完整代码代码说明这里使用Jupyter Notebook来完成代码的实现,只需导包然后按照步骤运行即可。SetUp!pip install --verbose --no-cac

2022-05-07 16:13:41 543 1

转载 图神经网络(四)图分类(3)图分类实战

图神经网络(四)图分类(3)图分类实战4.3 图分类实战4.3 图分类实战 本节我们通过代码来实现基于 自注意力的池化机制(Self-Attention Pooling)。这种方法的思路是通过图卷积从图中自适应地学习到节点的重要性。[0] 具体来说,使用第1章中定义的图卷积方式,可以为每个节点赋予一个重要性分数,如下式所示:Z=σ(D~−1/2A~D~−1/2XΘatt)Z=σ(\tilde{D}^{-1/2}\tilde{A}\tilde{D}^{-1/2}XΘ_{att})Z=σ(D~−1/2A~

2022-05-07 13:50:21 354 1

转载 图神经网络(四)图分类(2)基于层次池化的图分类

图神经网络(四)图分类(2)基于层次池化的图分类4.2 基于层次化池化的图分类4.2.1 基于图坍缩的池化机制1.图坍缩2.DIFFPOOL3.EigenPooling(1)图坍缩(2)池化操作4.2.2 基于TopK的池化机制4.2.3 基于边收缩收缩的池化机制4.2 基于层次化池化的图分类 本节以3中不同的思路介绍能够实现数据层次化池化的方案 [0] 。 (1)基于 图坍缩(Graph Coarsening)的池化机制:图坍缩是将图划分成不同的子图,然后将子图视为超级节点,从而形成一个坍缩的图。这

2022-05-06 21:46:29 398

转载 图神经网络(四)图分类(1)基于全局池化的图分类

图神经网络(四)图分类(1)基于全局池化的图分类第四章 图分类8.1 基于全局池化的图分类参考文献第四章 图分类 图分类问题是一个很重要的图层面的学习任务。与节点层面的任务不同,图分类需要关注图数据的全局信息,既包含图的结构信息,也包含各个节点的属性信息。给定多张图,以及每张图对应的标签,图分类任务需要通过学习得出一个由图到相应标签的图分类模型,模型的重点在于如何通过学习得出一个优秀的全图表示向量 [0] 。 图分类任务与视觉图像中的分类任务一样,二者都需要对全局的信息进行融合学习。在CNN模型中,通

2022-04-29 15:28:51 249

原创 图神经网络(三)GCN的变体与框架(6)GraphSAGE实战完整代码

图神经网络(三)GCN的变体与框架(6)GraphSAGE实战完整代码完整代码代码说明完整代码代码说明1.新建文件夹,将如下代码文件创建,如下图所示;2.下载数据,下载地址为;3.新建data/cora文件夹,将下载好的数据放入其中,如下图所示;4.直接运行main.py即可。data.pyimport osimport os.path as ospimport pickleimport numpy as npimport itertoolsimport scipy.spars

2022-04-28 11:40:23 166

转载 图神经网络(三)GCN的变体与框架(5)GraphSAGE实战

图神经网络(三)GCN的变体与框架(5)GraphSAGE实战3.5 GraphSAGE实战3.5 GraphSAGE实战 本节我们通过代码来介绍GraphSAGE以加深读者对相关知识的理解。如3.1节所介绍的,GraphSAGE包括两个方面,一是对于邻居的采样;二是对邻居的聚合操作 [0] 。 首先来看下对邻居的采样方法,为了实现更高效地采样,可以将节点及其邻居存放在一起,即维护一个节点与其邻居对应关系的表。我们可以通过两个函数sampling和multihop_sampling来实现采样的具体操作

2022-04-28 11:12:20 134

appium-windows-1.12.0

Windows下的appium1.12.0工具下载,官方绿色纯净版,appium 是一个自动化测试开源工具,支持 iOS 平台和 Android 平台上的原生应用,web应用和混合应用。 “移动原生应用”是指那些用iOS或者 Android SDK 写的应用(Application简称app)。 “移动web应用”是指使用移动浏览器访问的应用(appium支持iOS上的Safari和Android上的 Chrome)。 “混合应用”是指原生代码封装网页视图——原生代码和 web 内容交互。比如,像 Phonegap,可以帮助开发者使用网页技术开发应用,然后用原生代码封装,这些就是混合应用。 重要的是,appium是一个跨平台的工具:它允许测试人员在不同的平台(iOS,Android)使用同一套API来写自动化测试脚本,这样大大增加了iOS和Android测试套件间代码的复用性。

2019-04-17

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除