POJ ~ 1459 ~ Power Network (最大流 + 多源多汇问题 + 输入处理)

题意:m个点(0~m-1),a个发电站,b个用户,n条边。先输入n条边,格式为(u,v)w,然后输入a个发电站发送的最大电量(u)w,然后输入b个用户接受的最大电量(v)w。求发电站能输送到用户的最大电量?


思路:多源多汇问题。

多源多汇问题:源有多个,汇也有多个,流可以从任意一个源流出,最终可以流向任意一个汇,总流量等于所有源流出的总流量,也等于流进所有汇的总流量。

解:加一个超级源s'和超级汇t',然后从s'向每个源引一条有向弧,容量为无穷大,每个汇向t'引一条弧,容量为无穷大即可。

建立超级源m和超级汇m+1。

因为源点有最大流出量,所以超级源到源点建边的时候边权不为无穷大而是该源点的最大流出量。

因为汇点有最大流入量,所以汇点到超级汇建边的时候边权不为无穷大而是该汇点的最大流入量。


#include<iostream>
#include<cstdio>
#include<cstring>
#include<vector>
#include<queue>
using namespace std;
const int MAXN = 1e6 + 5;
const int INF = 0x3f3f3f3f;
struct Edge
{
    int from, to, cap, flow;       //起点,终点,容量,流量
    Edge(int u, int v, int c, int f) : from(u), to(v), cap(c), flow(f) {}
};
struct Dinic
{
    int n, m, s, t;                //结点数,边数(包括反向弧),源点s,汇点t
    vector<Edge> edges;            //边表。edges[e]和edges[e^1]互为反向弧
    vector<int> G[MAXN];           //邻接表,G[i][j]表示结点i的第j条边在edges数组中的序号
    int d[MAXN];                   //从起点到i的距离(层数差)
    int cur[MAXN];                 //当前弧下标
    bool vis[MAXN];                //BFS分层使用

    void init(int n)
    {
        this->n = n;
        edges.clear();
        for (int i = 0; i <= n; i++) G[i].clear();
    }

    void add_edge(int from, int to, int cap)
    {
        edges.push_back(Edge(from, to, cap, 0));
        edges.push_back(Edge(to, from, 0, 0));
        m = edges.size();
        G[from].push_back(m - 2);
        G[to].push_back(m - 1);
    }

    bool BFS()//构造分层网络
    {
        memset(vis, 0, sizeof(vis));
        queue<int> Q;
        d[s] = 0;
        vis[s] = true;
        Q.push(s);
        while (!Q.empty())
        {
            int x = Q.front(); Q.pop();
            for (int i = 0; i < G[x].size(); i++)
            {
                Edge& e = edges[G[x][i]];
                if (!vis[e.to] && e.cap > e.flow)
                {
                    vis[e.to] = true;
                    d[e.to] = d[x] + 1;
                    Q.push(e.to);
                }
            }
        }
        return vis[t];
    }
    int DFS(int x, int a)//沿阻塞流增广
    {
        if (x == t || a == 0) return a;
        int flow = 0, f;
        for (int& i = cur[x]; i < G[x].size(); i++)//从上次考虑的弧
        {
            Edge& e = edges[G[x][i]];
            if (d[x] + 1 == d[e.to] && (f = DFS(e.to, min(a, e.cap - e.flow))) > 0)//多路增广
            {
                e.flow += f;
                edges[G[x][i]^1].flow -= f;
                flow += f;
                a -= f;
                if (a == 0) break;
            }
        }
        return flow;
    }
    int max_flow(int s, int t)
    {
        this->s = s; this->t = t;
        int flow = 0;
        while (BFS())
        {
            memset(cur, 0, sizeof(cur));
            flow += DFS(s, INF);
        }
        return flow;
    }
};
Dinic solve;
int main()
{
    int m, a, b, n;
    while (~scanf("%d%d%d%d", &m, &a, &b, &n))
    {
        solve.init(m+1);
        int u, v, w;
        char s[100];
        for (int i = 0; i < n; i++)
        {
            scanf("%s", s);
            sscanf(s, "(%d,%d)%d", &u, &v, &w);
            solve.add_edge(u, v, w);
        }
        for (int i = 0; i < a; i++)
        {
            u = m;//超级源点m
            scanf("%s", s);
            sscanf(s, "(%d)%d", &v, &w);
            solve.add_edge(u, v, w);
        }
        for (int i = 0; i < b; i++)
        {
            v = m+1;//超级汇点m+1
            scanf("%s", s);
            sscanf(s, "(%d)%d", &u, &w);
            solve.add_edge(u, v, w);
        }
        int ans = solve.max_flow(m, m+1);
        printf("%d\n", ans);
    }
    return 0;
}
/*
2 1 1 2 (0,1)20 (1,0)10 (0)15 (1)20
7 2 3 13 (0,0)1 (0,1)2 (0,2)5 (1,0)1 (1,2)8 (2,3)1 (2,4)7
         (3,5)2 (3,6)5 (4,2)7 (4,3)5 (4,5)1 (6,0)5
         (0)5 (1)2 (3)2 (4)1 (5)4
*/

阅读更多
版权声明:本文为博主原创文章,未经博主允许不得转载。 https://blog.csdn.net/ZscDst/article/details/79953517
想对作者说点什么? 我来说一句

没有更多推荐了,返回首页

关闭
关闭
关闭