POJ ~ 3013 ~ Big Christmas Tree (最短路径树,思维)

在这里插入图片描述

题意

T组测试数据,每组先输入n,m表示有一个n个点m条边的无向图,然后输入n个点的点权,然后输入m条边(u,v,w),求一棵以1为根节点的数使得该树花费最小,输出最小花费,如果无法构建成一棵树输出“No Answer”。
树的花费为: ∑ \sum (边权*子树的点权和)

思路

通过推样例可以发现每个点的点权需要乘以这个点到根结点的所有边的边权,所以可以得到
∑ \sum 边权*子树的点权和 = ∑ \sum 该点根节点的路径*点权
所以直接跑一遍最短路统计答案即可。
注意开long long。

//#include<bits/stdc++.h>
#include <iostream>
#include <cstdio>
#include <cstring>
#include <queue>
using namespace std;
const int MAXN = 1e5+5;
typedef long long LL;
const LL INF = 0x3f3f3f3f3f3f3f3f;

struct Edge
{
    int from, to; LL dist;       //起点,终点,距离
    Edge(int from, int to, LL dist):from(from), to(to), dist(dist) {}
};

struct Dijkstra
{
    int n, m;                 //结点数,边数(包括反向弧)
    vector<Edge> edges;       //边表。edges[e]和edges[e^1]互为反向弧
    vector<int> G[MAXN];      //邻接表,G[i][j]表示结点i的第j条边在edges数组中的序号
    int vis[MAXN];            //标记数组
    LL d[MAXN];              //s到各个点的最短路
    int p[MAXN];              //上一条弧

    void init(int n)
    {
        this->n = n;
        edges.clear();
        for (int i = 0; i <= n; i++) G[i].clear();
    }

    void AddEdge(int from, int to, int dist)
    {
        edges.push_back(Edge(from, to, dist));
        m = edges.size();
        G[from].push_back(m - 1);
    }

    struct HeapNode
    {
        int from; LL dist;
        bool operator < (const HeapNode& rhs) const
        {
            return rhs.dist < dist;
        }
        HeapNode(int u, LL w): from(u), dist(w) {}
    };

    void dijkstra(int s)
    {
        priority_queue<HeapNode> Q;
        for (int i = 0; i <= n; i++) d[i] = INF;
        memset(vis, 0, sizeof(vis));
        d[s] = 0;
        Q.push(HeapNode(s, 0));
        while (!Q.empty())
        {
            HeapNode x = Q.top(); Q.pop();
            int u = x.from;
            if (vis[u]) continue;
            vis[u] = true;
            for (int i = 0; i < G[u].size(); i++)
            {
                Edge& e = edges[G[u][i]];
                if (d[e.to] > d[u] + e.dist)
                {
                    d[e.to] = d[u] + e.dist;
                    p[e.to] = G[u][i];
                    Q.push(HeapNode(e.to, d[e.to]));
                }
            }
        }
    }
}gao;

int a[MAXN];
int main()
{
    int T; scanf("%d", &T);
    while (T--)
    {
        int n, m; scanf("%d%d", &n, &m);
        for (int i = 1; i <= n; i++) scanf("%d", &a[i]);
        gao.init(n);
        while (m--)
        {
            int u, v, w; scanf("%d%d%d", &u, &v, &w);
            gao.AddEdge(u, v, w);
            gao.AddEdge(v, u, w);
        }
        gao.dijkstra(1);
        LL ans = 0;
        for (int i = 1; i <= n; i++)
        {
            if (gao.d[i] == INF) { ans = -1; break; }
            ans += a[i]*gao.d[i];
        }
        if (ans != -1) printf("%lld\n", ans);
        else printf("No Answer\n");
    }
    return 0;
}
/*
2
2 1
1 1
1 2 15
7 7
200 10 20 30 40 50 60
1 2 1
2 3 3
2 4 2
3 5 4
3 7 2
3 6 3
1 5 9
*/

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值