一、转换为字符串
自己想法 执行出错
class Solution:
def isPalindrome(self, x):
"""
:type x: int
:rtype: bool
"""
mystr = str(x)
l = len(mystr)
if l//2 == 0:
for i in range[0,l/2-1]:
if mystr[i] == mystr[l-i]:
return true
else:
return false
else:
for i in range[0,l//2]: ###出错
if mystr[j] == mystr[l-i]:
return true
else:
return false
TypeError: 'type' object is not subscriptable line16
class Solution:
def isPalindrome(self, x):
"""
:type x: int
:rtype: bool
"""
if x < 0:
return False
else:
y = str(x)[::-1]
if y == str(x):
return True
else:
return False
二、力扣官方解答思路 c# 我改为python
方法:反转一半数字
思路
映入脑海的第一个想法是将数字转换为字符串,并检查字符串是否为回文。但是,这需要额外的非常量空间来创建问题描述中所不允许的字符串。
第二个想法是将数字本身反转,然后将反转后的数字与原始数字进行比较,如果它们是相同的,那么这个数字就是回文。 但是,如果反转后的数字大于 \text{int.MAX}int.MAX,我们将遇到整数溢出问题。
按照第二个想法,为了避免数字反转可能导致的溢出问题,为什么不考虑只反转 \text{int}int 数字的一半?毕竟,如果该数字是回文,其后半部分反转后应该与原始数字的前半部分相同。
例如,输入
1221
,我们可以将数字“1221”的后半部分从“21”反转为“12”,并将其与前半部分“12”进行比较,因为二者相同,我们得知数字1221
是回文。让我们看看如何将这个想法转化为一个算法。
算法
首先,我们应该处理一些临界情况。所有负数都不可能是回文,例如:-123 不是回文,因为
-
不等于3
。所以我们可以对所有负数返回 false。现在,让我们来考虑如何反转后半部分的数字。 对于数字
1221
,如果执行1221 % 10
,我们将得到最后一位数字1
,要得到倒数第二位数字,我们可以先通过除以 10 把最后一位数字从1221
中移除,1221 / 10 = 122
,再求出上一步结果除以10的余数,122 % 10 = 2
,就可以得到倒数第二位数字。如果我们把最后一位数字乘以10,再加上倒数第二位数字,1 * 10 + 2 = 12
,就得到了我们想要的反转后的数字。 如果继续这个过程,我们将得到更多位数的反转数字。现在的问题是,我们如何知道反转数字的位数已经达到原始数字位数的一半?
我们将原始数字除以 10,然后给反转后的数字乘上 10,所以,当原始数字小于反转后的数字时,就意味着我们已经处理了一半位数的数字。
复杂度分析
时间复杂度:O(\log_{10}(n))O(log10(n)), 对于每次迭代,我们会将输入除以10,因此时间复杂度为 O(\log_{10}(n))O(log10(n))。
空间复杂度:O(1)O(1)。
class Solution:
def isPalindrome(self, x):
"""
:type x: int
:rtype: bool
"""
if x<0 or (x!=0 and x%10==0): #题中条件:整数包括负数,负数不是回文数需排除,同时0是回文数,而后面
#利用余数还原为逆序数,非零正整数且余数为零显然不是回文数,但不懂这里为什么要想到???
return false
revertednum=0
while x>revertednum: #while循环还原为逆序数
revertednum=revertednum*10+x%10
x//=10
return x==revertednum or x==revertednum//10 #如果位数是奇数得进一步比较除了中间位是否对称