[BZOJ1833][ZJOI2010]count数字计数

31 篇文章 0 订阅
4 篇文章 0 订阅

原题地址

数位DP…

写完自己已经不忍直视了,自己写的什么鬼这是…

写一下数位DP的“逐位确定”技巧:
在很多数位DP的题目中我们很容易得到一个数组f[],其中f[i]表示i位的满足题目要求的数的个数,即 [0,10i1] 满足题目要求的数的个数,具体数组的形式因题而异.
接下来要做的就是把所要求的 [0,k] 满足题目要求的数的个数中的 [0,k] 分成若干个区间,以便用上f数组(好绕…).
举个例子如k=231可以分成[0 00,0 99],[1 00,1 99],[20 0,20 9],[21 0,21 9],[22 0,22 9],[230,230],[231,231]来分别计算所需答案,其中加粗部分即所谓“逐位确定”中的“位”,具体看代码.

注意a[1]=1时可能会有特殊情况!第一位为0时要特殊计算!

AC code:

#include <cstdio>
typedef long long ll;
const ll N=15;
ll a[3],len[3],ten[N]={1};
ll b[3][N],dig[3][N],ans[3][10];

void cal(ll num,ll x){
    if(!x){
        for(ll i=1;i<=len[num];i++) ans[num][dig[num][i]]++;
        return ;
    }
    if(x==len[num]&&x!=1){
        ans[num][0]=1;
        for(ll i=x;i>=3;i--) ans[num][0]+=ten[i-3]*(i-2)*9;
        for(ll i=1;i<10;i++) ans[num][i]+=ten[x-2]*(x-1);
    }
    for(ll i=(x==len[num]?1:0);i<b[num][x];i++){
        dig[num][x]=i;
        for(ll j=x;j<=len[num];j++) ans[num][dig[num][j]]+=ten[x-1];
        if(x==1) continue;
        for(ll j=0;j<10;j++) ans[num][j]+=ten[x-2]*(x-1);
    }
    dig[num][x]=b[num][x];
    cal(num,x-1);
}

int main(){
    scanf("%lld%lld",&a[1],&a[2]); 
    a[1]--;
    for(ll i=1;i<=2;i++){
        ll t=a[i];
        if(!a[i]){
            len[i]=1;
            continue;
        }
        while(t){
            b[i][++len[i]]=t%10;
            t/=10;
        }
    }
    for(ll i=1;i<=len[2];i++) ten[i]=ten[i-1]*10;
    for(ll i=1;i<=2;i++) cal(i,len[i]);
    for(ll i=0;i<10;i++){
        printf("%lld",ans[2][i]-ans[1][i]);
        if(i==9) printf("\n");
        else printf(" ");
    }

    return 0;
}
  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
题目描述 有一个 $n$ 个点的棋盘,每个点上有一个数字 $a_i$,你需要从 $(1,1)$ 走到 $(n,n)$,每次只能往右或往下走,每个格子只能经过一次,路径上的数字和为 $S$。定义一个点 $(x,y)$ 的权值为 $a_x+a_y$,求所有满足条件的路径中,所有点的权值和的最小值。 输入格式 第一行一个整数 $n$。 接下来 $n$ 行,每行 $n$ 个整数,表示棋盘上每个点的数字。 输出格式 输出一个整数,表示所有满足条件的路径中,所有点的权值和的最小值。 数据范围 $1\leq n\leq 300$ 输入样例 3 1 2 3 4 5 6 7 8 9 输出样例 25 算法1 (树形dp) $O(n^3)$ 我们可以先将所有点的权值求出来,然后将其看作是一个有权值的图,问题就转化为了在这个图中求从 $(1,1)$ 到 $(n,n)$ 的所有路径中,所有点的权值和的最小值。 我们可以使用树形dp来解决这个问题,具体来说,我们可以将这个图看作是一棵树,每个点的父节点是它的前驱或者后继,然后我们从根节点开始,依次向下遍历,对于每个节点,我们可以考虑它的两个儿子,如果它的两个儿子都被遍历过了,那么我们就可以计算出从它的左儿子到它的右儿子的路径中,所有点的权值和的最小值,然后再将这个值加上当前节点的权值,就可以得到从根节点到当前节点的路径中,所有点的权值和的最小值。 时间复杂度 树形dp的时间复杂度是 $O(n^3)$。 C++ 代码 算法2 (动态规划) $O(n^3)$ 我们可以使用动态规划来解决这个问题,具体来说,我们可以定义 $f(i,j,s)$ 表示从 $(1,1)$ 到 $(i,j)$ 的所有路径中,所有点的权值和为 $s$ 的最小值,那么我们就可以得到如下的状态转移方程: $$ f(i,j,s)=\min\{f(i-1,j,s-a_{i,j}),f(i,j-1,s-a_{i,j})\} $$ 其中 $a_{i,j}$ 表示点 $(i,j)$ 的权值。 时间复杂度 动态规划的时间复杂度是 $O(n^3)$。 C++ 代码
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值