图灵机停机问题的不可判定性

Turing Machine Halting Problem

停机问题:指判断任意一个程序是否能在有限的时间之内结束运行的问题。图灵机停机问题是不可判定的,意思即是不存在一个图灵机能够判定任意图灵机对于任意输入是否停机。

证明一:

参考链接:Turing Machine Halting Problem

为了证明这个问题的不可判定性,我们将基于莱斯定理(Rice’s Theorem)将其规约成另外的问题来判定某个图灵机是否能在给定的输入上,在有限步数内给出确定的或者不是的答案。
图灵机的停机问题可以描述为以下模式:
输入:一个图灵机 M , 和一个输入字符串 w
问题:所给定的图灵机 M 是否能在有限步数内结束对字符串 w 进行运算并给出接受拒绝的确定答案。
证明:首先,我们将假定确实是存在一个图灵机解决这样的问题,接着我们将描述这个假定是如何与它本身相违背的。我们将称这种图灵机为可停机机器(HM)——能在有限时间内停机并且给出’yes’或者’no’的答案,即当HM能在有限时间内停机时,我们所构建的图灵机HM

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值