hiho一下 第十六周 RMQ-ST算法

RMQ (Range Minimum/Maximum Query)问题:对于长度为N的数列a,若干次查询,每次给出R和L,a[L——R]的最小(大)值,也就是说,RMQ问题是指求区间最值的问题。

此题要求最小值

首先进行预处理,计算从任意位置i开始的2^j长度的序列中的最小值,并存储到min[i][j]中,初始化min[i][0]=weight[i](weight[]存储数列),从i开始的长度为2^j的数列可以而分为长度为2^(j-1)的两段,这两段的min值都以计算,故min[i][j]=两者的最小值

对于每一次查询,取小于查询长度的最大整数2^m,将所查询区间分为长度为2^m的两段,二者取其小,这两段或许会有重叠部分,但并不影响

代码如下:

#include <stdio.h>
#include <math.h>
#define MAX_N 1000000 

int weight[MAX_N], N;
int min[MAX_N][20]; //min[i][j]存储从i开始,长度为2^j序列中的最小值 

int Min(int a, int b){
	return a < b ? a : b;
}

void RMQ_ST(){
	int m = (int)(log((double)N)/log(2.0));
	int i, j, n;
	
	for(i = 0; i < N; i++){
		min[i][0] = weight[i];
	}
	for(j = 1; j <= m; j++){
		n = N+1-(1 << j);
		for(i = 0; i < n; i++){
			min[i][j] = Min(min[i][j-1], min[i+(1 << (j-1))][j-1]);
		}
	}
}

int Querry(int L, int R){
	int m = (int)(log((double)(R-L+1))/log(2.0));
	return Min(min[L][m], min[R+1-(1 << m)][m]);
}

int main(){
	int i, Q, L, R;
	scanf("%d", &N);
	for(i = 0; i < N; i++){
		scanf("%d", &weight[i]);
	}
	
	RMQ_ST();
	
	scanf("%d", &Q);
	while(Q--){
		scanf("%d%d", &L, &R);
		printf("%d\n", Querry(L-1, R-1));
	}
	
	return 0;
} 


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值