Adversarial Self-Supervised Learning for Semi-Supervised 3D Action Recognition

该研究提出了一种对抗自监督学习(ASSL)框架,旨在解决半监督3D动作识别问题。通过结合自监督学习与对抗学习,ASSL能够从大量未标记的骨骼序列中学习动作表征。文章指出直接应用自监督学习可能导致有标签和无标签样本的学习不一致,为此引入了邻居一致性策略,通过K近邻和信息聚合增强类别语义。此外,还提出了一种对抗正则化方法来对齐有监督和自监督学习的特征分布,提高模型的泛化能力。
摘要由CSDN通过智能技术生成

Adversarial Self-Supervised Learning for Semi-Supervised 3D Action Recognition

Abstract
自监督学习(SSL)已被证明在图像域中从未标记数据中学习表示非常有效。目前,针对三维动作识别的有效自监督方法还不多见,直接将SSL应用于半监督学习,存在从SSL学习到的表征与有监督学习任务不一致的问题。为解决这个问题。作者提出对抗自监督学习(ASSL),它通过领域关系提取和对抗学习把SSL和半监督方法结合。
Introduction
最近,SSL被提出通过骨骼图用来学习未标签序列的时间信息,但SSL把每一个样本都视作独立个体,因此忽视了样本中相似动作所共有的信息。
直接将SSL应用于半监督学习,存在自监督学习任务和有监督学习任务学习结果不一致的问题。受unsupervised domain adaptation (UDA)中对抗学习的启发,把adversarial learning与self-supervision结合进semi-supervised learning中。
main contributions:
1.我们为半监督3D动作识别提出了一个对抗自监督学习(ASSL)框架,它通过对抗学习和领域关系探索把SSL和半监督方法紧密的结合。
2.我们提出了一个新的自监督方案,i.e.,邻居一致性。通过研究领域的数据联系,模型能学习到不同的动作表征。
3.我们确定了直接将SSL应用于半监督学习,存在有标签样本与无标签样本学习结果不一致的问题。一个新颖的对抗正则化被提出将SSL与半监督算法结合,以对齐两者的特征分布,这能进一步的提升泛化能力。
problem frmulation
使用很少的标签数据在半监督3D动作识别。首先, X X X代表训练集。训练样本 x i ∈ X x_i\in X xiX是带有T帧的骨骼序列,与有监督3D动作识别不同,训练集被分为两部分:有标签集 X L X_L XL,无标签集 X U X_U XU。受 S 4 L S^4L S4L启发,我们提出了对抗自监督学习架构来学习两个训练集的不同动作表征。
neighborhood consistency
半监督3D动作识别的目的是学习有区别的动作表征从大量的无标签序列。然而,很难获得简洁的3D人类姿势。为解决这个问题,我们提出了一个高效的SSL策略,领域一致性,一吃增强潜在的类别语义的动作表征。
在这里插入图片描述
如图,我们首先应用skeleton inpainting学习无标签序列的时间信息。具体来说,编码器网络Encr把输入骨骼序列 x u x_u xu生成为时间特征 h u h_u hu。一个解码器网络Dec目标是填充输入序列的masked region,为了区分在动作分类(区别)和骨骼修补(回归),我们使用了一个翻译层,例如,一个线性层搭建两者特征空间的关系。线性层的样本 x u x_u xu的输出表示为 h ‾ u \overline{h}_u hu。在这个特征空间,我们应用K-nearest neighborFon从未标签训练集 X U X_U XU来选择K最近邻居。 x u x_u xu的邻居集被表示为 Ω x \Omega _x Ωx。一个信息聚合模型被提出老生成局部中心向量。我们使用多重感知机来分配每一个邻居样本的权值,评估他们的相似性,权值 α k \alpha _k αk计算如下:
在这里插入图片描述
上式 h ‾ u k \overline{h}^k_u huk是邻居样本 x u k x_u^k xuk被翻译的特征, M L P ( ) MLP() MLP()表示多重感知机,通过被计算的权重{ α 1 , . . . , α K \alpha_1,...,\alpha_K α1,...,αK},局部类中心 c u c_u cu被聚类为:
在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值