论文阅读(21CVPR):Semi-Supervised Action Recognition with Temporal Contrastive Learning

动机:

Temporal Contrastive Learning (TCL) (TASK-动作识别

在这篇论文中,作者主要关注于视频中的“时间”这个监督信号,基于此提出了一个不同速度的时间通道对比模型,最小化不同速度的相同视频之间的相似度,最大化不同速度以及不同视频之间的相似度,由于instance-contrastive loss存在将相同类别的视频推远的缺点,作者提出了group-contrastive loss,将同一类别的识别归纳到同一个group中,并用group中的所有特征的平均值来表示该group,在group-level上计算对比损失

这篇论文在使用很少标签的基础上,取得很好的性能,并在域外的数据集上也证明了有较好的泛化性

如图2所示,该模型包含两个不同速度的时间通道,分别为base和auxiliary,base相比auxiliary有更多的视频帧

backbone首先在少量的labeled data上进行训练来进行初始化,使用cross-entropy loss

Instance-Contrastive Loss

在无标签数据上对不同速度的特征保持时间一致性来作为代理任务并使用pair wise contrastive loss

Group-Contrastive Loss

将有相同伪标签的视频分为同一个group

有相同label的不同速度的group应该保持high class consistency,作者提出了group-contrastive loss

Experiment

Ablation

  • 2
    点赞
  • 2
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
CVPR 2019中发表了一篇题为“迁移学习:无监督领域自适应的对比适应网络(Contrastive Adaptation Network for Unsupervised Domain Adaptation)”的论文。这篇论文主要介绍了一种用于无监督领域自适应的对比适应网络。 迁移学习是指将从一个源领域学到的知识应用到一个目标领域的任务中。在无监督领域自适应中,源领域和目标领域的标签信息是不可用的,因此算法需要通过从源领域到目标领域的无监督样本对齐来实现知识迁移。 该论文提出的对比适应网络(Contrastive Adaptation Network,CAN)的目标是通过优化源领域上的特征表示,使其能够适应目标领域的特征分布。CAN的关键思想是通过对比损失来对源领域和目标领域的特征进行匹配。 具体地说,CAN首先通过一个共享的特征提取器来提取源领域和目标领域的特征表示。然后,通过对比损失函数来测量源领域和目标领域的特征之间的差异。对比损失函数的目标是使源领域和目标领域的特征在特定的度量空间中更加接近。最后,CAN通过最小化对比损失来优化特征提取器,以使源领域的特征能够适应目标领域。 该论文还对CAN进行了实验验证。实验结果表明,与其他无监督领域自适应方法相比,CAN在多个图像分类任务上取得了更好的性能,证明了其有效性和优越性。 综上所述,这篇CVPR 2019论文介绍了一种用于无监督领域自适应的对比适应网络,通过对源领域和目标领域的特征进行对比学习,使得源领域的特征能够适应目标领域。该方法在实验中展现了较好的性能,有望在无监督领域自适应任务中发挥重要作用。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值