Decoupling GCN with DropGraph Module for Skeleton-Based Action Recognition

Decoupling GCN with DropGraph Module for Skeleton-Based Action Recognition

原文地址:https://www.ecva.net/papers/eccv_2020/papers_ECCV/papers/123690528.pdf

Abstract 在基于骨骼的动作识别中,GCNs实现了瞩目的成功,但如何在不增加额外的计算负担的情况下高效的建模时空骨骼图在工业应用领域任然是个具有挑战性的问题。在这篇文章中,作者重思了在目前存在的基于GCN的骨骼动作识别方法中的空间聚合,发现他们都受限于耦合集合机制。受CNNs中的解耦聚合机制的启发,作者提出了解耦GCN来增强图建模能力,在不增加额外的计算量,延迟和GPU内存花费的情况下,而且不到10%的额外参数。另外一个GCN普遍的问题是过拟合,dropout在GCN中也不够有效,作者提出了DropGraph来丢弃在相邻结点中的特征。此外,作者介绍了一种注意力指导丢弃机制(attention-guide drop mechanism)来增强正则化效果。

Introduction
作者发现目前的GCN方法忽视了CNN中的一个重要机制:解耦聚合(decoupling aggregation)。具体来说,在CNN中每一个channal都有一个独立的spatial aggregation kernel,在不同的频率,方向和颜色能获得不同的空间信息。然而在图卷积中所有channal共享同一个空间聚集核,即邻接矩阵。受CNN中的解耦聚合的启发,作者提出了解耦图卷积网络。
在图卷积中的普遍问题是过拟合,虽然在GCNs中使dropout,但效果不理想:即使一个node被dropped,但这个node的信息任然被他的neighbor nodes获得,这就造成了过拟合。因此作者提出了DropGraph,关键idea是:当丢弃一个node时,同时也丢弃他的相邻结点。此外,还提出一个注意力-指导丢弃机制(ADG)来增强正则化效果。

main contributions:

  1. We propose DC-GCN, which efficiently enhances the expressiveness of graph convolution with zero extra computation cost.
  2. We propose ADG to effectively relieve the crucial over-fitting problem in GCNs.
  3. Our approach exceeds the state-of-the-art method with less computation cost. Code will be available at https: //github.com/kchengiva/DecoupleGCN-DropGraph.

Approach

1.Decoupling graph convolutional network
Motivation 图卷积包括两个矩阵乘积操作:AX和XW。AX计算不同骨骼间的聚合信息,我们称之为spatial aggregation。 XW计算不同信道间的相关信息,我们称之为channal correlation。
在Fig.1(a)中,空间聚集(AX)能被分解为分别计算每一个信道上的聚合。特征X的所有信道共享同一个邻接矩阵A(画着相同的颜色),这意味着所有信道共享同一个聚合核,我们称之为耦合聚合。所有目前的识别方法都采用这种方式,例如ST-GCN,Nolocal adaptive GCN,AS-GCN,Directed-GCN。我们统称为耦合图卷积。
在这里插入图片描述
然而,作为GCN启发的源头CNN没有采用耦合聚合。在图(b)中,不同的信道有独立的空间聚合核,显示不同的颜色。我们称这个机制为解耦聚合。

DeCoupling GCN被耦合聚合所限制的传统图卷积类似于退化深度卷积,他的卷积核在信道间被共享。退化深度卷积的表达能力明显弱于标准深度卷积。因此,作者推断目前基于GCN的谷歌动作识别模型缺少解耦聚合机制。
在文章中,作者提出了解耦图卷积(DGC),不同的信道有独立可训练的邻接矩阵,展示在图©。解耦图卷积大大增加了邻接矩阵的多样性。类似于CNN核的冗余,DGC能介绍冗余的邻接矩阵。因此我们把信道分离成g组。在一组的信道共享一个可训练的邻接矩阵。当g=C时,每一个信道都有他自己能生成大量冗余参数的spatial aggregation kernel;当g=1时,DGC退化成聚合图卷积(coupling graph convolution)。DGC的等式如下:
在这里插入图片描述
where
Attention-guided DropGraph

DropGraph的主要思路是:当丢弃一个节点时,我们同时丢弃该节点的邻居节点集。DropGraph有两个参数: γ \gamma γ和K。 γ \gamma γ控制采样概率,K控制被丢弃邻居集的大小。在一个输入特征图中,我们首先用概率为 γ \gamma γ的伯努利分别采集根节点 v r o o t v_{root} vroot,然后丢弃该节点以及离该节点最大为K步的结点 。算法如下。
在这里插入图片描述
keep_prob表示被保留的激活单元的概率。在常规卷积中,keep_prob=1- γ \gamma γ。但在DropGraph, v r o o t v_{root} vroot上的每一个零项都扩展到它的第1;2ed;···;k阶邻域。因此,keep_prob同时依赖于 γ \gamma γ和K。在一个有n个点e条边的图中,定义每个节点的平均度为 d a v e = 2 e / n d_{ave}=2e/n dave=2e/n。在一个随机被取样的结点的i_th阶领域,期望节点数能被评估为
B i = d a v e × ( d a v e − 1 ) i − 1 B_i=d_{ave}\times(d_{ave}-1)^{i-1} Bi=dave×(dave1)i1
平均被丢弃的丢弃大小为:
d r o p s i z e = 1 + ∑ i = 1 K B i drop_{size}=1+\sum_{i=1}^KB_i dropsize=1+i=1KBi
如果我们想保持keep_prob概率的激活单元,我们设置:
γ = 1 − k e e p p r o b d r o p s i z e \gamma=\frac{1-keep_{prob}}{drop_{size}} γ=dropsize1keepprob
注意到在丢弃的区域可能有一些重叠的地方,因此这个等式仅仅是个近似。在实验中,一开始是评估keep_prob在0.75-0.95,然后用公式5计算 γ \gamma γ.

Attention-guided drop mechanism
为了增强正则化效应,作者让注意力区域有更高的采样 v r o o t v_{root} vroot的概率。 v v v是一个节点, γ v \gamma_v γv表示采样的结点 v v v v r o o t v_{root} vroot的概率,更正等式5为:
在这里插入图片描述
α \alpha α是注意力图, α ~ \tilde{\alpha} α~是归一化注意力图, c o u n t ( α ) count(\alpha) count(α) α \alpha α中元素的数量。

Spatial-temporal ADG
在这里插入图片描述
在这里插入图片描述

  • 1
    点赞
  • 10
    收藏
    觉得还不错? 一键收藏
  • 2
    评论
"Decoupling of mode" (模式解耦)是指在某个系统或过程中,将不同的功能或模块从彼此紧密耦合的状态中解开,使得它们可以独立地操作或发展。这种解耦可以带来一系列的好处,包括提高系统的灵活性、可扩展性和可维护性。 模式解耦的好处之一是系统的灵活性。通过解耦不同的功能或模块,可以使得系统更容易进行修改或扩展。例如,在软件开发中,如果各个模块之间过于紧密耦合,当需要对其中一个模块进行修改时,可能会影响到其他模块的正常运行,从而增加了修改的难度。而通过解耦,可以降低这种影响,使得系统更加灵活,能够更快速地进行修改或适应变化。 另一个好处是系统的可扩展性。通过解耦模块,可以更方便地添加新的功能或模块,而不会对原有的系统产生太大的影响。例如,在一个电子商务网站中,如果模块之间的耦合度较高,添加一个新的支付方式可能需要对多个模块进行修改。而通过解耦,可以将支付模块与其他模块解耦,从而更容易地添加新的支付方式,提高系统的可扩展性。 此外,模式解耦还有助于系统的可维护性。当各个功能或模块相互独立时,对系统进行维护或修复时可以更加专注和有效。如果模块之间过于紧密耦合,一个小的问题可能会影响到整个系统,导致维护过程变得复杂和困难。通过解耦,可以将问题范围限定在一个模块内,使得维护工作更加高效。 总的来说,“decoupling of mode”是一种通过解开紧密耦合的模块或功能之间的关系,使得系统更加灵活、可扩展和可维护的方法。它在各种领域,包括软件开发、系统设计和工程管理等方面都有着广泛的应用和重要的价值。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值