一、基础特征 智能推荐算法在直播场景中的应用 - 知乎
二、多模态特征(多模态特征中的一部分也需要实时的,因为直播过程中是不断变化的内容。而正是当时变化成什么样子是决定用户是否来观看)
视频音频处理上面那种统计或内容理解外,还需要下面的方式进行提取
三、实时特征
四、业务思考
五、除了算法工程师自己设计交叉函数外,一些常见的自动交叉思路
1:FM
参考文章:机器学习笔记:核函数的作用简介 - 不说话的汤姆猫 - 博客园
FM的本质就是两两特征之间的核函数就能够表达特征交叉,核函数的意义是:低维度空间向高维度空间作一个映射,使原本线性不可分数据变得在高维度上变得可分,并找到这个分割函数
2:KFM
FM的一个问题就是embedding长度需要设置成一样才能保证两两特征交叉。K歌这边参考QQ看点团队的方法,设置一个更加普适的核函数来把所有的低阶特征映射到一个比较通用的空间来进行交叉。这种情况相当于我们直接对Bit级别的特征做FM,从而能够达到两两特征交叉的目的。在这样的情况下,在离线数据上,KFM比FM有四个千分点的提升
3:AutoInt,就是在transformer是把一个句子(比如用户点击序列)作为输入时,这里是把每个特征当成一个词(离线特征、连续特征都有自己的做法)
AutoInt:使用Multi-head Self-Attention进行自动特征学习的CTR模型_浅梦的学习笔记-CSDN博客_autoint模型
4:DCN-V1/V2/M
【论文解读】DCN-M:Google提出改进版DCN,用于大规模排序系统的特征交叉学习(附代码)..._fengdu78的博客-CSDN博客(1) DCN-V
DCN-V里面的重点是交叉层,也就是中间的左边部分,x1的计算公式由上图表名,所以这里的x0 x0(T) w(c,0) b(c,0)都是vector,所以DCN-V里面的V代表是vector,这里的参数量也很小。假设vector的长度为d,每一层是w b两个参数,也就是2d
(2) DCN-M
这里的M指matrix
对比这两个公式,DCN-V里面每一层都是前一层计算得到 x(i+1)=x(i)*xi(T)*w+b+x(i)。在DCN-M中每一层除了上一层外,还和第一层有关,x(i+1)=x0*(x(i)*w+b)