特征匹配
opencv中knnMatch是一种蛮力匹配,基本原理是将待匹配图片的sift等特征与目标图片中的全部sift特征一对n的全量便利,找出相似度最高的前k个。当待匹配的图片增多时,需要的计算量太大,所以考虑是否可以通过降维的方式减少计算过程中的时间花费。
特征匹配
1、brute—force,蛮力匹配
全部过程
构建一个边缘检测算法sift
获得一个暴力匹配器的对象
检测特征
一对一匹配
把匹配的图像跟原图用线连起来
k对最佳匹配
此处采用SVD的方式实现PCA降维sift特征,从而加快计算。
结果图解
当特征点不匹配时,需要减小误差,因此用最小二乘法拟合即RANSAC,能使结果更准确
推荐一个非常棒的讲解python opencv3 基于ORB的特征检测和 BF暴力匹配 knn匹配 flann匹配
https://www.cnblogs.com/Lin-Yi/p/9433942.html
本文借鉴
https://mp.weixin.qq.com/s?__biz=MzI1ODEzMDQ3OQ==&mid=2247483932&idx=1&sn=9aaaef709c56c858ff6dac1e909d8b90&scene=19&token=1038729941&lang=zh_CN#wechat_redirect