<算法导论>练习4.5

本文详细解答了《算法导论》第四章第五节的四个练习题,涉及算法的时间复杂度分析。通过代入公式和比较,得出各题目的复杂度结果:a. Θ(n²); b. Θ(n²lgn); c. Θ(n); d. Θ(n²); 并指出4.5-2题中,当a=48时,算法的时间复杂度低于Strassen算法的Θ(nlg7); 对于4.5-4题,由于f(n)=n²lgn,不满足主定理条件,其复杂度为Θ(n²lg2(n))。
摘要由CSDN通过智能技术生成

4.5-1

判断一下分别属于哪种情况然后代入公式即可。
a. Θ ( n log ⁡ 4 2 ) = Θ ( n 1 2 ) \Theta(n^{\log_42})=\Theta(n^\frac12) Θ(nlog42)=Θ(n21)
b. Θ ( n

本书全面地介绍了科学计算中解各种主要问题的数值方法,包括线性和非线性方程、最小二乘法、特征值、最优化、插值、积分、常微分方程和偏微分方程、快速傅里叶变换和随机数生成。本书的特点是: 以使用算法的读者为对象,重点讲授算法背后的思想和原理,而不是算法详细分析。 强调敏感性和病态性等概念,对同一问题的不同算法进行比较和评价,提高读者对算法的鉴赏能力。 对每类问题都专门介绍和讨论有关的数学软件,包括在Internet上可以获得的免费软件和有权保护的商业软件平台,供读者选用。 丰富的例题和习题,书中包括160多道例题,500多道思考题,240多道练习题和200多道数值计算题。 本书可作为研究生“数值分析”课程的教材或参考书,对于需要解决计算问题的科技人员,本书具有很高的参考价值。 第1章 科学计算 1 1.1 引言 1 1.2 科学计算中的近似 3 1.3 计算机运算 13 1.4 数学软件 26 1.5 有关历史的注记及参考文献 31 第2章 线性方程组 41 2.1 线性方程组 41 2.2 解的存在性和惟一性 42 2.3 问题的敏感性和病态性 43 2.4 线性方程组的求解 53 2.5 特殊类型的线性方程组 72 2.6 线性方程组的迭代法 76 2.7 有关线性方程组的软件 76 2.8 有关历史的注记及参考文献 78 第3章 线性最小二乘 90 3.1 线性最小二乘问题 90 3.2 解的存在性和惟一性 93 3.3 问题的敏感性和病态性 97 3.4 问题的变形 100 3.5 正交化方法 104 3.6 奇异值分解 119 3.7 方法间的比较 124 3.8 有关线性最小二乘的软件 125 3.9 有关历史的注记及参考文献 126 第4章 特征值问题 136 4.1 特征值和特征向量 136 4.2 解的存在性和惟一性 138 4.3 问题的敏感性和条件数 144 4.4 问题的变形 146 4.5 特征值和特征向量的计算 150 4.6 广义特征值问题 174 4.7 奇异值分解的计算 175 4.8 有关特征值问题的软件 175 4.9 有关历史的注记及参考文献 177 第5章 非线性方程 187 5.1 非线性方程 187 5.2 解的存在性和惟一性 188 5.3 问题的敏感性和病态性 191 5.4 收敛速度和判停准则 192 5.5 一维非线性方程 193 5.6 非线性方程组 205 5.7 有关非线性方程组的软件 210 5.8 有关历史的注记及参考文献 212 第6章 优化问题 221 6.1 优化问题 221 6.2 最优解的存在性和惟一性 223 6.3 问题的敏感性和病态性 232 6.4 一维优化 233 6.5 无约束优化 239 6.6 非线性最小二乘 247 6.7 约束优化 250 6.8 有关优化的软件 256 6.9 有关历史的注记及参考文献 258 第7章 插值 269 7.1 插值 269 7.2 插值的存在性、惟一性和病态性 271 7.3 多项式插值 272 7.4 分段多项式插值 283 7.5 有关插值的软件 287 7.6 有关历史的注记及参考文献 289 第8章 数值积分和数值微分 294 8.1 积分 294 8.2 积分解的存在性、惟一性和问题的病态性 295 8.3 数值求积 296 8.4 其他积分问题 310 8.5 积分方程 313 8.6 数值微分 315 8.7 理查森外推法 318 8.8 有关积分和微分的软件 321 8.9 有关历史的注记及参考文献 322 第9章 常微分方程的初值问题 330 9.1 常微分方程 330 9.2 解的存在性、惟一性和问题的病态性 334 9.3 常微分方程数值解 336 9.4 有关常微分方程初值问题的软件 354 9.5 有关历史的注记及参考文献 355 第10章 常微分方程边值问题 363 10.1 边值问题 363 10.2 解的存在性、惟一性和问题的病态性 364 10.3 打靶法 367 10.4 有限差分法 370 10.5 配置法 371 10.6 伽辽金方法 374 10.7 特征值问题 378 10.8 有关常微分方程边值问题的软件 378 10.9 有关历史的注记及参考文献 379 第11章 偏微分方程 384 11.1 偏微分方程 384 11.2 时间相关问题 389 11.3 时间无关问题 395 11.4 稀疏线性方程组的直接法 398 11.5 线性方程组的迭代法 401 11.6 方法间的比较 412 11.7 有关偏微分方程的软件 415 11.8 有关历史的注记及参考文献 417 第12章 快速傅里叶变换 426 12.1 三角插值 426 12.2 FFT算法 429 12.3 DFT的应用 432 12.4 小波 434 12.5 有关FFT的软件 435 12.6 有关历史的注记及参考文献 435 第13章 随机数和随机模拟 440 13.1 随机模拟 440 13.2 随机性和随机数 440 13.3 随机数发生器 441 13.4 拟随机序列 443 13.5 有关随机数生成的软件 444 13.6 有关历史的注记及参考文献 445 索引 450 参考文献 455 译者后记 476
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值