算法导论 练习题 4.5-4

n的logba次=n2,f(n)=n2lgn

两项相除为lgn,并不满足多项式,所以无法用主定理,只能采用递归树

共lgn+1层,每层4i个结点,每个结点代价(n2/2i+1)lg(n/2i)

最后一层4lgn+1个结点,每个代价θ(1),则最后一层代价θ(n2)

T(n)=∑(n2/2i+1)lg(n/2i)+θ(n2)

       =n2lgn∑(i/2i+1)+θ(n2)

       <(lgn)2n2∑(1/2i+1)+θ(n2)

       <(lgn)2n2+θ(n2)

       =θ((lgn)2n2)

  • 2
    点赞
  • 3
    收藏
    觉得还不错? 一键收藏
  • 1
    评论
好的,这是两个问题。让我分别回答。 --- 对于习题24.2-4,我们需要证明:对于有向图$G=(V,E)$,从源点$s$到任何其他点$v\in V$的最短路径上最多可以包含$|V|-1$条边。 我们可以使用反证法来证明这个结论。假设存在一条从$s$到$v$的最短路径包含了$|V|$条边。由于这是一条简单路径,所以它经过了$|V|$个顶点中的所有顶点。因此,这个路径形成了一个简单环。我们可以从这个简单环中删除任意一条边,得到一条从$s$到$v$的路径,路径长度比原来的最短路径长度更小,这与原来的最短路径的假设相矛盾。因此,假设不成立,结论得证。 --- 对于习题24.3-6,我们需要证明:如果负权重有向图$G$中不存在从源点$s$可达的负权重环,则Bellman-Ford算法能够正确地计算出从$s$到所有其他顶点的最短路径。 我们可以使用反证法来证明这个结论。假设存在一个从$s$到$v$的最短路径上存在一个负权重环。由于负权重环的存在,我们可以通过不断绕这个环走来无限制地减小路径长度,因此不存在从$s$到$v$的最短路径。但是,Bellman-Ford算法会在第$|V|$次松弛操作之前终止,并且在第$i$次松弛操作之后,算法会计算出从$s$到所有距离$s$不超过$i$的顶点的最短路径。因此,我们可以得出结论:如果负权重有向图$G$中不存在从源点$s$可达的负权重环,则Bellman-Ford算法能够正确地计算出从$s$到所有其他顶点的最短路径。
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值