numpy.ndarray相关

本文介绍了Python中NumPy数组的切片与索引操作,包括基本语法i:j:k,其中i为起始索引,j为结束索引,k为步长。文章还演示了如何通过使用:来选取数组中的所有数据,并通过具体实例展示了如何获取数组中的第一列和第二列。
摘要由CSDN通过智能技术生成

Slicing and Indexing(切片与索引)

  • The basic slice syntax is i:j:k where i is the starting index, j is
    the stopping index, and k is the step ( k!=0). This selects the m
    elements (in the corresponding dimension) with index values i,i + k,
    …, i + (m - 1) k where and q and r are the quotient and remainder
    obtained by dividing j - i by k: j - i = q k + r, so that i + (m - 1)
    k < j
  • Negative i and j are interpreted as n + i and n + j where n is the number of elements in the corresponding dimension. Negative k makes stepping go towards smaller indices.
  • :代表选中该轴的所有数据
    -
arr = np.array([(2,3),(5,4),(9,6),(4,7),(8,1),(7,2)])

#获取第一列
fisrt_col = arr[:, 0]
#获取第二列
second_col = arr[:, 1]
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值