3.9-unsupported operand type(s) for *: ‘float‘ and ‘NoneType‘

本文记录了一次模型训练过程中的错误排查经历,错误源于模型参数定义时的一个小失误,即在迭代变量名后多输入了一个字母's'。通过逐步逆向排查定位到问题并修复,实现了模型的成功训练。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

实操的时候,前面六个代码块都正常运行,但是最后一步训练模型时报错,如图:

#训练模型
num_epochs, lr = 5, 100.0
d2l.train_ch3(net, train_iter, test_iter, loss, num_epochs, batch_size, params, lr)

 提示是*这个字符连接的“float”和“NoneType”的操作数类型不受支持,但是这一行代码并没有错误,GitHub下载了教学的代码,也可以顺利运行。经过从后往前的一步步排查,发现是定义模型参数时犯了个小错误:

#定义模型参数
num_inputs, num_outputs, num_hiddens = 784, 10, 256

W1 = torch.tensor(np.random.normal(0, 0.01, (num_inputs,num_hiddens)),dtype=torch.float)
b1 = torch.zeros(num_hiddens, dtype=torch.float)
W2 = torch.tensor(np.random.normal(0, 0.01,(num_hiddens,num_outputs)),dtype=torch.float)
b2 = torch.zeros(num_outputs, dtype=torch.float)

params = [W1, b1, W2, b2]
for params in params:
    params.requires_grad_(requires_grad=True)

最后两行的param多打了一个s,是低级失误,但是不知道会以这种形式报错。

修改为:

params = [W1, b1, W2, b2]
for param in params:
    param.requires_grad_(requires_grad=True)

运行后正常输出:

 在学习过程中对每行代码的具体含义并不是很了解

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值