题目描述
Bob 最近正在学习二进制,但二进制的每一位上只能是 00 或 11,这让 Bob 觉得很无趣,于是他研究出了一种新的二进制:每一位上只能是 −1−1 或 11!
Bob 想研究的新二进制数有 nn 位,它可以表示为 b1×20+b2×21+⋯+bn×2n−1b1×20+b2×21+⋯+bn×2n−1,其中 bibi 等于 ±1±1。进一步地,Bob 认为一个区间 [l,r][l,r] 满足 1≤l≤r≤n1≤l≤r≤n 是正的,当且仅当其代表值 bl×2l−1+bl+1×2l+⋯+br×2r−1>0bl×2l−1+bl+1×2l+⋯+br×2r−1>0,区间 [l,r][l,r] 是负的则表示代表值 <0<0。
请问正区间个数和负区间个数相差多少?换言之,将正区间的个数记为 AA,负区间的个数记为 BB,求 ∣A−B∣∣A−B∣ 的值。
输入格式
第一行一个整数 TT 表示数据组数,对于每组数据:
第一行一个整数 nn。
第二行 nn 个整数 b1∼nb1∼n。
输出格式
对于每组数据,输出一行一个整数表示答案。
数据范围
对于 30%30% 的数据,1≤T≤101≤T≤10,1≤n≤501≤n≤50。
对于 60%60% 的数据,1≤T≤101≤T≤10,1≤n≤10001≤n≤1000。
对于 100%100% 的数据,1≤T≤1051≤T≤105,1≤n≤1051≤n≤105,∑n≤3×105∑n≤3×105,bi=1bi=1 或 bi=−1bi=−1。
样例数据
输入:
4
4
1 -1 1 1
3
-1 -1 -1
2
1 -1
2
1 1
输出:
6
6
1
3
说明:
样例解释:对于第三组数据,区间 [1,1],[1,2],[2,2] 的代表值分别为 1,-1,-2,则A=1,B=2,|A-B|=1。详见代码:
#include <bits/stdc++.h>
using namespace std;
int main()
{
int t, n, b;
cin >> t;
while(t--)
{
cin >> n;
long long ans = 0;
for(int i = 1; i <= n; i++)
{
cin >> b;
if (b > 0)
{
ans += i;
}
else
{
ans -= i;
}
}
cout << abs(ans) << endl;
}
return 0;
}