Spark学习—统计文件单词出现次数

上一节我们简单介绍了RDD中转化和执行操作的用法,本节将通过一个具体的示例来加深对RDD的认识。

一.需求

统计本地文件中单词出现次数

二.操作流程

1.读取外部文件创建JavaRDD;

2.通过flatMap转化操作切分字符串,获取单词新JavaRDD;

3.通过mapToPair,以key为单词,value统一为1的键值JavaPairRDD;

4.通过reduceByKey,累计叠加每个key,统计单词出现次数;

三.代码实现

package com.lm.sparkLearning.rdd;

import java.util.Arrays;

import org.apache.spark.api.java.JavaPairRDD;
import org.apache.spark.api.java.JavaRDD;
import org.apache.spark.api.java.JavaSparkContext;
import org.apache.spark.api.java.function.FlatMapFunction;
import org.apache.spark.api.java.function.Function2;
import org.apache.spark.api.java.function.PairFunction;
import org.apache.spark.api.java.function.VoidFunction;
import org.slf4j.Logger;
import org.slf4j.LoggerFactory;

import com.lm.sparkLearning.utils.SparkUtils;

import scala.Tuple2;

/**
 * word文件单词出现个数计算
 * 
 * @author dlm
 *
 */
public class WordCountCalcLearing {

	private static Logger logger = LoggerFactory.getLogger(WordCountCalcLearing.class);

	public static void main(String[] args) {
		JavaSparkContext jsc = SparkUtils.getJavaSparkCOntext("WordCountSpark", "local[2]", "WARN");

		JavaRDD<String> wordRdd = SparkUtils.createRddExternal(jsc, "D:/README.txt");

		wordCountCal(wordRdd);
		
		jsc.stop();

	}

	/**
	 * wordRdd统计计算逻辑
	 * 
	 * @param wordRdd
	 */
	public static void wordCountCal(JavaRDD<String> wordRdd) {
		// 将整个字符串根据空格分隔成单词
		JavaRDD<String> wordFlatMap = wordRdd.flatMap(new FlatMapFunction<String, String>() {

			/**
			 * 
			 */
			private static final long serialVersionUID = 1L;

			@Override
			public Iterable<String> call(String t) throws Exception {
				return Arrays.asList(t.split("[^a-zA-Z']+"));
			}
		});

		// 将每个单词映射次数为1
		JavaPairRDD<String, Integer> wordMapToPair = wordFlatMap.mapToPair(new PairFunction<String, String, Integer>() {

			/**
			 * 
			 */
			private static final long serialVersionUID = 1L;

			@Override
			public Tuple2<String, Integer> call(String t) throws Exception {
				return new Tuple2<String, Integer>(t, 1);
			}
		});

		// 将每个重复key的value相加
		JavaPairRDD<String, Integer> wordReduceByKey = wordMapToPair
				.reduceByKey(new Function2<Integer, Integer, Integer>() {

					/**
					 * 
					 */
					private static final long serialVersionUID = 1L;

					@Override
					public Integer call(Integer v1, Integer v2) throws Exception {
						return v1 + v2;
					}
				});

		// 输出统计结果
		wordReduceByKey.sortByKey().foreach(new VoidFunction<Tuple2<String, Integer>>() {

			/**
			 * 
			 */
			private static final long serialVersionUID = 1L;

			@Override
			public void call(Tuple2<String, Integer> t) throws Exception {
				logger.warn("key:" + t._1 + ",value:" + t._2);
			}
		});
	}
}


四.下载代码

代码地址:http://download.csdn.net/detail/a123demi/9840519

OSChina : http://git.oschina.net/a123demi/sparklearning


评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值