kaggle aptos2019 的图像预处理

本文介绍了kaggle aptos2019图像预处理步骤,包括基于眼球半径的resize、特征增强和去除眼球周围部分。预处理旨在统一图像尺寸、增强特征,提高模型对糖尿病视网膜病变检测的准确性。尽管一些后续竞赛中预处理影响不大,但在早期图像预处理仍然是关键的一环。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

kaggle aptos2019 的图像预处理

APTOS全称Asia Pacific Tele-Ophthalmology Society (APTOS) Symposium。训练和测试样本图片由印度Aravind Eye Hospital为了筛查农村人口的病情所得。

aptos2019 竞赛的目的是分析糖尿病造成的视网膜病变(diabetic retinopathy)的严重程度,正常为0,最差为4,疾病严重的可致盲。所以此项研究旨在利用人工智能方法尽早诊断糖尿视网膜病变,避免病情恶化。
kaggle链接如下:
https://www.kaggle.com/c/aptos2019-blindness-detection/overview

眼底照片如下:
眼底照片

图像预处理

由于图像实际拍摄的时间、地点、设备、操作人员不同,所以尺寸,颜色、亮度也各不相同。正所谓垃圾进,垃圾出。直接对原图进行训练增加训练的难度,不容易找到病变的特征。

一般的计算机视觉处理都会进行图像预处理。在aptos2019竞赛的kaggle社区notekooks中,看到最多的一种图像增强方法是Ben Graham提出的。他是aptos2015年的糖尿病视网膜病变竞赛的冠军,由于2019年的竞赛图像也是相似的,所以很多人都延用他的预处理方法。

方法分为以下3步

  1. rescale the images to have the same radius (300 pixels or 500 pixels),
  2. subtracted the local average color; the local average gets mapped to 50% gray,
  3. clipped the images to 90% size to remove the “boundary effects”.

python 代码如下:

import cv2 , glob , numpy
# 输出图像的眼球半径都为1*scale个像素
def scaleRadius(img,scale):
    x = img[int(img.shape[0]/2),:
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值